

Techniques

Contents

- Medical: Quick Impressions
- Why Surface?
- One detailed example : XPS
 - Conditions, information,
 - Ingredients:
 - 1-Source 2-Surface 3-Spectrom
 - Extensions
 - XPD, ARPES, SRPES, PEEM
- Other techniques
- Conclusion

Medical: quick impressions

almost always

• Living/ moving tissues

Nondestructive testing

• Volumes to treat, image in 3D or project to 2D

• mm level imaging (nm with STM

Why surface is interesting?

- Interesting physics:
 - half the volume is missing: laws are different
 - Oxidation and gas association phenomena
 - Layers growth, thin films
- The place where atoms are manipulated (STM)

- Important Applications
 - electronics industry: chips are in surface realm
 - Silicon, germanium...
 - catalysis -corrosion

XPS:

<u>Photoelectron</u>

TAK ONECOM

<u>Spectroscopy</u>

Elemental + Chemical Info

- n, l, LS :lines"Finger print"
- chemical shifts
 →oxidation studies
 →catalysis poisoning
 →magnetic properties
- 1 10 nm depth
- 0.01 1 % tracing

100

BE(eV)

105

Extended techniques

AT THE COMPANY OF

X-ray Photoelectron Diffraction

(XPD)

 Track angular variation of a certain peak intensity. It varies only if it belongs to the second layer

<u>Consideration</u>: preparation, propped depth, time ->surface structure + enhanced surface sensitivity

Photoelectron Emission Microscopy (PEEM)

- Focus x-rays → image

 collimating (signal↓ -> synchrotron)
 x-ray optics (under development)
- Advantage: Element specific, chemical status

• Applications:

• diffusion, segregation, Shottky barrier

Auger process

- 3-e process, not f(hv)
- X-ray or e-beam induced
- Microscopy (SAM)

- fluorescence (by x-ray as TRXF)
- 1 in $10^9 10^{12}$

Other Surface Techniques

Scanning Probe Microscopy

- STM, AFM ...
- high (or even atomic) resolution
- atomically sharp tip raster a surface
- vary/fix current voltage, move tactic
- tip material

NIST

(left) single atomic zig-zag chain of Cs (red) on GaAs(110) surface.

(right) substitutional Cr impurities (small bumps) in Fe(001) surface

Proton-induced X-ray emission (PIXE)

- micro PIXE– images (now: 5 x 5 μm)
- 3 MeV protons (accelerator + focus) → inner vacancy florescence
- trace analysis of elemental composition
- simultaneous multi-element (NDT!)
- multilayer --- not a surface technique
- Mineralogy, Geochemistry & Materials Science

Conclusion

• Microscopy with Spectroscopy feature

• Medical: interest, restrictions, *importance*

• Material science: diversity