Prof. Dr. I. Nasser Phys530, T142 3-Oct-17
Specific_heat_solid

Quantum Theory of Solids

Introduction: Classical approach to specific solids predicts that Cv is constant at 3R (equi-partition
principle). This is known as Dulong—Petit’s Law. This law works very well at high temperature region. But in
early twentieth century, low temperature measurements revealed an interestingly different story.
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experimental temperature dependence of Cy for solids

We will now discuss about two successful theories which have resolved the issue.
Monatomic Crystals

Let us consider a one dimensional crystal where atoms are connected by spring. This description works for
crystals because each atom/molecule at corresponding lattice site is confined by a step potential.

D P P Y

JLJLJL

f; ] EI +«1
Schematic representation of one dlmen5|onal crystal system of masses and springs.

In the course of vibration, atoms can displace by small amount, &j. We can write the energy U of such a crystal
of N atoms as a Taylor series expansion in &;
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The 2nd term on the RHS is zero because U is minimum at zero displacement (equilibrium state). We can write
the expansion as

U(&.é,....8)=U(0,0,....,0 ZZK,Jgg

i=1l j=1
where we have truncated the series after the quadratlc term. Here Kijj is the force constant of the bond between
the bond involving atom i and j. Also the all the Kj; = K, as the crystal is monatomic. Now, this quadratic

function can be diagonalized by introducing normal coordinate, just as we do in vibrational spectroscopy of
polyatomic molecules.
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If we have N atoms in the crystals, then 3N-6 vibrational modes will be there. Since here N is of
0(102%), then 3N-6 =~ 3N. So, we will have 3N normal modes of frequency of the j*" mode be

1 [k,
vV.=— |—
'ox U

We do not really need the precise form of kj, yj, and vj in this treatment (we can get them from considering
lattice dynamics). We shall replace vj by a distribution which is called phonon density of state (the normal
modes are called phonons).

Now the crystal does not translate and rotate, so the partition function of the crystals is

3N
Zy(V.T)=e]] 2z,
j=1

Here Z,;, ; is the vibrational partition function (PF) of the j™ normal mode. Let us now evaluate the vibrational
PF. Consider a harmonic oscillator of frequency v. Energy levels are

1 )
Ej=(1+§jhv , j=0,1,23.............
Partition function is
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So, the total canonical PF is
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Also we can write the logarithm of the PF as
3N hV-
Inz, (V,T)= —&—Z |n(1—e‘“Vi’kBT )+_,
KeT 4= KgT
Now, we introduce a phonon density of states g(v) which should follow the following equation

Tdvg (v)=3N

So the logarithm of the PF can be written as the following integral equation

U, ¢ hv
—InZ,(V,T)=—2+ || In(1—e ™" )+ —— |g(v)dv
)= 2 fnfaee s M)
Now we will try to get integral equation of different thermodynamics properties of the crystal using this
PF. Let us get the integral equation for energy of the system E. Using the relation of canonical

oInz, (V,T)] we get
\

ensemble E =k,T?
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We can also get an expression for heat capacity Cv using the thermodynamics relation (C, = (Z—f_) ) as
\

hv 1 kgT) ™" g (v)dv
(1_ a /T )2

At this point given a suitable expression for phonon density of states g(v), one can get the thermodynamics
properties and their temperature dependence.

C, :ks]g(

A. Einstein Theory: In order to explain non-classical, low temperature behavior of specific of solids,
Einstein proposed a simple quantum model and assumes the following:

1- The crystal consists of atoms which may be regarded as identical and fixed at the lattice points.

2- The atoms in a crystal vibrate independently of each other about fixed lattice points.

3- These vibrations are all assumed to be simple harmonic, all with the same frequency.

4- The vibrations of any one atom can be split into three independent vibrations one along each coordinate

axis.

Hence a solid containing N atoms is equivalent to 3N harmonic oscillators vibrating independently of each
other all with the same frequency, say v. The value of this frequency depends on the strength of the restoring
force. Consider any simple solid with N atoms. These atoms are free to vibrate about their equilibrium positions.
(Such vibrations are called "lattice vibrations"). The total energy of the system is written as

3N pIZ 1 )
E = E., E.=—+2k.q, 1
g i i 2m 2 |q| ( )
Thus the total energy is considered as that of 3N independent one dimensional harmonic oscillator. If the
temperature T is high enough so that classical description is applicable, then the application of the equipartition
theorem allows one to conclude that the total mean energy (internal energy of the crystal) is

U =6N (%kBTj:3NkBT —3RT  (if N =N,)
Thus the specific heat at constant volume becomes
C, :(%l =3R =25 Jmole'*K™  (Douling-Petit)

Of course, the preceding arguments are not valid for solids at appreciably lower temperatures, which required
that TIirrgCV ~0. To do so, Einstein introduced the following assumptions:

a- All atoms in the solid vibrate with the same angular frequency e, , which implies k, = ma? for all terms
i inequation (1).
b- The mole of solid is equivalent to an assembly of 3N, independent one dimensional harmonic
oscillators, which could be easily treated by quantum mechanics with the following results:
Using the quantum energy levels in the forme, =(n +%)hVE =(n +%)ha)E , the single particle partition function

will be:

a
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Internal energy and heat capacity of the Einstein solid

e Now that we have the partition function, it is straightforward to determine thermodynamic quantities for
the Einstein solid. First, let’s derive the internal energy:

(Eqn 1) U =<E>=—é’lanﬂz
3N ghv y
(Eqn 2) InZ = ; -3N In(eﬂh —1)
_ 3Nhv  3Nhve™ )3 3Nhv
(Egn 3) .-U‘IZ > (ﬁ,,v 1):| (ﬁhv_ ) Nh (ﬁ'h )

e INTERPRET THE BEHAVIOR
e Using the internal energy, we can calculate the heat capacity of the Einstein solid:

d dU
ool
Vv vV

e Since B = 1/KT:

dp 1
Eqn 5 e
(Ean 5) dT  kT*
e Thus we can write the derivative dU/dT in the more convenient form:
au d 1 (dU
wo a2 () ()l
dTr dp kT"\dp),
hv
phv *T
(Eqn 7) C, = 3Nkﬂ2(h V)2€—2 k( j (h V)2 ¢
(eﬂh‘/—l) ( *T J
ekl —1

e The Einstein solid heat capacity is plotted below as calculated for Diamond, compared to the
experimentally measured heat capacity- and we see quite good agreement over a broad range of
temperatures. In particular, at high temperatures, we see the limiting behavior of the heat capacity is:

1

A+phv+.) Nk (h ) G 2

(1+phv+.. )

o ...correctly predicting the limiting value of Cv observed experimentally for many solids.

=3Nk=3R

(Egn 8) CV(T—>oo)z 3Nk,82(h )
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by introducing the characteristic "Einstein temperature” © =%, then

3R

C = 2
Y 73R (®—E) e
T

—Og T

B

T >0,

T << 0O,

Thus the specific heat should approach zero exponentiallyas T — 0.

o

Figure 11.14 Experimental values of the hear capacity
of diamond (o) compared with values calculated by the
Einstein model (), using the characreristic
temperature Qypranen = AV /k = 1320K. Vibrations are
frozen out at low temperatures. Source: R) Borg and G)
Dienes, The Physical Chemistry of Solids, Academic Press
Inc, San Diego, 1992. The data are from A Einstein, Ann
Phys 22, 180 (1907).
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Specific Heat (J g~! K~1)
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Figure 11.15 Specific heat (heat capacity per gram) versus temperature T for solids:
diamond (0), graphite (o), and fullerenes (#). This log-log plot emphasizes the
behavior at low temperatures. The Einstein model of independent oscillators

(~ T-2e~%'T) characterizes fullerenes from about T = 5K - 100K, but the more
sophisticated Debye model of coupled oscillators ~ T* is a better model for diamond
and graphite at low temperatures. Source: JR Olson, KA Topp and RO Pohl, Science
259, 1145-1148 (1993).

Experimentally the specific heat approaches zero more slowly than this, indeed C, T *as T —0. The
reason for this discrepancy is the crude assumption that all atoms vibrate with the same characteristic frequency.
In reality this is not the case (even if all the atoms are identical). Nevertheless, the crude assumptions of
Einstein approximation give a reasonably good description of the specific heats of solids. It also makes clear the
existence of the a characteristic parameter ®. which depends on the properties of the solid under consideration.

The normal modes of the crystal are its various standing waves of free vibration whose lowest
frequencies are in the sonic range (wavelength = half or a third or a tenth of crystal size) and highest frequencies
are in the infrared (wavelength = size of interatomic distance). Sometimes the quantized standing waves are
called phonons. Then n, is the number of phonons in the i wave. The phonons are related to the vibrations of

the lattice in a crystal in the same fashion as photons are related to the vibrations of the electromagnetic field.

B Debye theory:

The disagreement between Einstein’s result and the experimental data is due to the fact that Einstein’s
assumptions about the atoms in a crystal do not strictly apply to real crystals. The main problem lies in the
assumption that a single frequency of vibration characterizes all 3N oscillators. Debye improved on Einstein’s
theory by considering the vibrations of a body as a whole, regarding it as a continuous elastic solid. He
associated the internal energy of the solid with stationary elastic sound waves. Each independent mode of
vibration (or normal mode) is treated as a degree of freedom.

6
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In Debye’s theory a solid is viewed as a phonon gas. Vibrational waves are matter waves, each with its
own de Broglie wavelength and associated particle. The particle is called a phonon, with characteristics similar
to those of a photon. If the interatomic distance is small as compared to the wavelength of elastic waves, the
crystal can be regarded as a continuum from the point of view of the wave. Based on this idea, Debye based his
theory on the following assumptions:

a- The motion of each atom in a solid is not independent of the motions of its neighbors, as assumed by
Einstein.

b- The single frequency of Einstein should be replaced by a spectrum of vibrational frequency, with an
upper frequency limit v (or o, ), for the solid. v, is called Debye (or cut-off) frequency.

c- Solids regard as a gas of non-interacting particles (phonons), enclosed in a volume V .

The density of states for photons in the frequency range @ t0 w+dw is:

V 2 1
do=—| =+ |0do.
g(w)dw 27[2(CT3 ija) @

Where the factor of 3 takes into account that there are 3 polarizations (2 transverse with speed c; and 1
longitudinal with speed c, ). Note that in the Debye theory we assumed that the speed of sound is constant

for all phonon frequencies. In practice this is not the case, but the Debye theory is generally used at low
temperatures, where only low frequency phonons are excited, and where the approximation that they all travel
at the same speed is a good one.

Since each oscillator of the assembly vibrates with its own frequency, and we are considering an assembly of
3N linear oscillator, there must be an upper limit to the frequency spectrum. The maximum frequency @, is

determined from the fact that there are only 3N phonons:

[

[g(@)do=3N,

where we obtain for the cut-off frequency
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I.e. the maximum frequency ¢ o w_j is determined by the average interatomic spacing. Thus the structure of

1/3
the crystal sets a lower limit to the wavelength 7 O{\l(l_j ; higher frequencies (shorter wavelength) do not

lead to new modes of atomic vibration. Consequently,
2

9N 60_3 foro<w,
g(@)=1 @,

0 foro>w,
From Bose-Einstein distribution law
dn = 3@ )d o,
efhom _1
then the total number of phonons per unit volume is
dn 3z

— = T —dw
V. 2z%cteltm 1"
If the above equation multiplied by the energy of photon E =7%aw,, the result is the energy per unit volume, i.e.

the energy density

du ar  ha?

m

vV  2z%ciefm —1

daw,
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By using the dimensionless parameter

_ha, O
7 kT T
where 0, = ha, is the “Debye's temperature”, one can have
B
du  3n (kY 7#°
=52 3( - j ! dz
Vv 2rc h )e’-1

Hence the internal energy per unit volume is

O 4 phoy, 3
li=J‘U(a),T)ia)= S (kBTj .[ 7 dn
0

V 7%\ h , e"-1
_ON (kT 4"”"]"’“ g,
7’ \he, ) 3 e"-1
ank,T 3 [ g = ph
- B F!e"—l 7, X_ﬂ @y,
Define Debye's function D (x ) by:
3% 3 1—§x+2i0x2+--- X<<l = T 5w
n d
D(X)zFJ.e”—l B z*
0 F+O(e‘x) x>1 = T -0
X
At high temperatures, x <<1
Y _ank,T,
\
C, =3kg, (Douling-Petit)

At very low temperatures, x >>1
U 3z'(k,T)

% 500
4 3
c _12z NK, T
5 0,

Consequently,
This is Debye's famous T *-law", which is valid at low temperatures.

Substance | ©, (K)
Lead 88
Mercury 97
Silver 215
Copper 315
Iron 453
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| Diamond | 1860 |

Table Debye temperatures of some material

Limitations of the Debye Model

i. The Debye’s continuum model is valid for long wavelengths only, i.e., only low frequencies are active

in the solid.

ii. The total numbers of vibrational modes are assumed to be 3N. This is difficult to justify as the solid is
considered to be an elastic continuum which should possess infinite frequencies.

iii. The cut off frequency is assumed to be the same for both longitudinal and transverse waves. This is
again difficult to justify because different velocities of transverse and longitudinal waves should imply
different values of cut off frequency for these waves.

iv. According to the Debye’s theory, ®, is independent of temperature, whereas actually it is found to vary

up to an extent of 10% or even more.
v. The theory does not take into account the actual crystalline nature of the solid. The theory cannot be

applied to crystals comprising more than one type of atoms.
vi. The theory completely ignores the interaction among th atoms and the contribution of electrons to the

specific heat.
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Fit of silver specific heat
— data to the Debye curve
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The data for silver shown at left is from Meyers. It shows that the specific heat fits the Debye model at both low

and high temperatures.
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