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Quantum Theory of Solids 

 

Introduction: Classical approach to specific solids predicts that CV is constant at 3R (equi-partition 

principle). This is known as Dulong–Petit’s Law. This law works very well at high temperature region. But in 

early twentieth century, low temperature measurements revealed an interestingly different story. 

 
 

experimental temperature dependence of CV  for solids 

 

We will now discuss about two successful theories which have resolved the issue. 

Monatomic Crystals 
Let us consider a one dimensional crystal where atoms are connected by spring. This description works for 

crystals because each atom/molecule at corresponding lattice site is confined by a step potential. 

 

 
Schematic representation of one dimensional crystal system of masses and springs. 

 

In the course of vibration, atoms can displace by small amount, ξj. We can write the energy U of such a crystal 

of N atoms as a Taylor series expansion in ξj  
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The 2nd term on the RHS is zero because U is minimum at zero displacement (equilibrium state). We can write 

the expansion as 

                             1 2

1 1

1
, ,....., 0,0,......,0

2

N N

n ij i j

i j

U U K    
 

    

where we have truncated the series after the quadratic term. Here Kij is the force constant of the bond between 

the bond involving atom i and j. Also the all the Kij = K, as the crystal is monatomic.  Now, this quadratic 

function can be diagonalized by introducing normal coordinate, just as we do in vibrational spectroscopy of 

polyatomic molecules. 
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If we have N atoms in the crystals, then 3N-6 vibrational modes will be there. Since here N is of 

O(1023), then 3N-6  ≈ 3N. So, we will have 3N normal modes of frequency of the jth mode be 
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We do not really need the precise form of kj, μj, and νj in this treatment (we can get them from considering 

lattice dynamics). We shall replace νj by a distribution which is called phonon density of state (the normal 

modes are called phonons).  

 

Now the crystal does not translate and rotate, so the partition function of the crystals is 
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Here ,vib jz  is the vibrational partition function (PF) of the jth normal mode. Let us now evaluate the vibrational 

PF. Consider a harmonic oscillator of frequency ν. Energy levels are  
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 So, the total canonical PF is  
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Also we can write the logarithm of the PF as 
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Now, we introduce a phonon density of states g(ν) which should follow the following equation 
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So the logarithm of the PF can be written as the following integral equation 
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Now we will try to get integral equation of different thermodynamics properties of the crystal using this 

PF. Let us get the integral equation for energy of the system E. Using the relation of canonical 

ensemble
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We can also get an expression for heat capacity CV using the thermodynamics relation (
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At this point given a suitable expression for phonon density of states g(ν), one can get the thermodynamics 

properties and their temperature dependence. 

 

A.  Einstein Theory: In order to explain non-classical, low temperature behavior of specific of solids, 

Einstein proposed a simple quantum model and assumes the following: 

 

1- The crystal consists of atoms which may be regarded as identical and fixed at the lattice points. 

2- The atoms in a crystal vibrate independently of each other about fixed lattice points. 

3- These vibrations are all assumed to be simple harmonic, all with the same frequency. 

4- The vibrations of any one atom can be split into three independent vibrations one along each coordinate 

axis.  

Hence a solid containing N atoms is equivalent to 3N  harmonic oscillators vibrating independently of each 

other all with the same frequency, say  . The value of this frequency depends on the strength of the restoring 

force. Consider any simple solid with N atoms. These atoms are free to vibrate about their equilibrium positions. 

(Such vibrations are called ''lattice vibrations''). The total energy of the system is written as 
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Thus the total energy is considered as that of 3N independent one dimensional harmonic oscillator. If the 

temperature T is high enough so that classical description is applicable, then the application of the equipartition 

theorem allows one to conclude that the total mean energy (internal energy of the crystal) is 
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Thus the specific heat at constant volume becomes 
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Of course, the preceding arguments are not valid for solids at appreciably lower temperatures, which required 

that 
0

lim 0V
T

C


 . To do so, Einstein introduced the following assumptions: 

a- All atoms in the solid vibrate with the same angular frequency E , which implies 2

i Ek m for all terms 

i  in equation (1). 

b- The mole of solid is equivalent to an assembly of  3 aN  independent one dimensional harmonic 

oscillators, which could be easily treated by quantum mechanics with the following results: 

Using the quantum energy levels in the form
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Internal energy and heat capacity of the Einstein solid 

 

 Now that we have the partition function, it is straightforward to determine thermodynamic quantities for 

the Einstein solid.  First, let’s derive the internal energy: 
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 INTERPRET THE BEHAVIOR 

 Using the internal energy, we can calculate the heat capacity of the Einstein solid: 
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 Since  = 1/kT: 
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 Thus we can write the derivative dU/dT in the more convenient form: 
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(Eqn 7)   
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 The Einstein solid heat capacity is plotted below as calculated for Diamond, compared to the 

experimentally measured heat capacity- and we see quite good agreement over a broad range of 

temperatures.  In particular, at high temperatures, we see the limiting behavior of the heat capacity is: 

 

(Eqn 8)   
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o …correctly predicting the limiting value of Cv observed experimentally for many solids. 
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by introducing the characteristic ''Einstein temperature'' E
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Thus the specific heat should approach zero exponentially as 0T  .  

o  

 

 

 

 
 PHYSICAL INTERPRETATION 
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Experimentally the specific heat approaches zero more slowly than this, indeed 3

vC T  as 0T  . The 

reason for this discrepancy is the crude assumption that all atoms vibrate with the same characteristic frequency. 

In reality this is not the case (even if all the atoms are identical). Nevertheless, the crude assumptions of 

Einstein approximation give a reasonably good description of the specific heats of solids. It also makes clear the 

existence of the a characteristic parameter E  which depends on the properties of the solid under consideration. 

The normal modes of the crystal are its various standing waves of free vibration whose lowest 

frequencies are in the sonic range (wavelength = half or a third or a tenth of crystal size) and highest frequencies 

are in the infrared (wavelength = size of interatomic distance). Sometimes the quantized standing waves are 

called phonons. Then in  is the number of phonons in the ith wave. The phonons are related to the vibrations of 

the lattice in a crystal in the same fashion as photons are related to the vibrations of the electromagnetic field. 

 

B  Debye theory:  

The disagreement between Einstein’s result and the experimental data is due to the fact that Einstein’s 

assumptions about the atoms in a crystal do not strictly apply to real crystals. The main problem lies in the 

assumption that a single frequency of vibration characterizes all 3N oscillators. Debye improved on Einstein’s 

theory by considering the vibrations of a body as a whole, regarding it as a continuous elastic solid. He 

associated the internal energy of the solid with stationary elastic sound waves. Each independent mode of 

vibration (or normal mode) is treated as a degree of freedom. 
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In Debye’s theory a solid is viewed as a phonon gas. Vibrational waves are matter waves, each with its 

own de Broglie wavelength and associated particle. The particle is called a phonon, with characteristics similar 

to those of a photon. If the interatomic distance is small as compared to the wavelength of elastic waves, the 

crystal can be regarded as a continuum from the point of view of the wave. Based on this idea, Debye based his 

theory on the following assumptions: 

 

a- The motion of each atom in a solid is not independent of the motions of its neighbors, as assumed by 

Einstein. 

b- The single frequency of Einstein should be replaced by a spectrum of vibrational frequency, with an 

upper frequency limit 
m (or 

m ), for the solid. 
m is called Debye (or cut-off) frequency. 

c- Solids regard as a gas of non-interacting particles (phonons), enclosed in a volume  V .  
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Where the factor of 3 takes into account that there are 3 polarizations (2 transverse with speed Tc and 1 

longitudinal with speed Lc ). Note that in the Debye theory we assumed that the speed of sound is constant 

for all phonon frequencies. In practice this is not the case, but the Debye theory is generally used at low 

temperatures, where only low frequency phonons are excited, and where the approximation that they all travel 

at the same speed is a good one. 
 

Since each oscillator of the assembly vibrates with its own frequency, and we are considering an assembly of 

3N linear oscillator, there must be an upper limit to the frequency spectrum. The maximum frequency m  is 
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From Bose-Einstein distribution law 
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If the above equation multiplied by the energy of photon mE   the result is the energy per unit volume, i.e. 
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By using the dimensionless parameter  
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Define Debye's function  D x by: 
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Consequently, 

This is Debye's famous 3T -law'', which is valid at low temperatures. 

 

Substance (K)D  

Lead 88 

Mercury 97 

Silver 215 

Copper 315 

Iron 453 
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Table  Debye temperatures of some material 

 

Limitations of the Debye Model 

 

i. The Debye’s continuum model is valid for long wavelengths only, i.e., only low frequencies are active 

in the solid. 

ii. The total numbers of vibrational modes are assumed to be 3N. This is difficult to justify as the solid is 

considered to be an elastic continuum which should possess infinite frequencies. 

iii. The cut off frequency is assumed to be the same for both longitudinal and transverse waves. This is 

again difficult to justify because different velocities of transverse and longitudinal waves should imply 

different values of cut off frequency for these waves. 

iv. According to the Debye’s theory, D  is independent of temperature, whereas actually it is found to vary 

up to an extent of 10% or even more. 

v. The theory does not take into account the actual crystalline nature of the solid. The theory cannot be 

applied to crysta1s comprising more than one type of atoms. 

vi. The theory completely ignores the interaction among th atoms and the contribution of electrons to the 

specific heat. 

 

 

 

 

 

 

 

 

 

Diamond 1860 
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The data for silver shown at left is from Meyers. It shows that the specific heat fits the Debye model at both low 

and high temperatures. 

 


