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CLASSICAL STATISTICS OF PARAMAGNETISM   
 

The most famous types of Magnetic materials are: 

 

(i) Paramagnetic: A property exhibit by substances which, when placed in a magnetic field, are 

magnetized parallel to the field to an extent proportional to the field (except at very low 

temperatures or in extremely large magnetic fields). 

(ii) Ferromagnetic:  A property, exhibited by certain materials, alloys, and compound of the 

transition (iron group), rare-earth, and actinide elements, in which the internal magnetic 

moments spontaneously organized in a common direction; gives rise to a permeability 

considerably greater than that of vacuum, and to magnetic hysteresis.     

(iii) Diamagnetic: Having a magnetic permeability less than one; materials with this property are 

repelled by a magnet and tend to position themselves at right angles to magnetic lines of 

force.  

 
Type Example Susceptibility (  ) Permeability Comments 

Paramagnetic Aluminum positive >1, (1.001) Temperature dependant 

Ferromagnetic Iron, nickle 0  104 
Magnetic domain, 

 hysteresis 

Diamagnetic bismuth negative < 1, (0.999)  

 

Magnetic susceptibility   represents the response of a system to the external field.   

Hysteresis means the dependence of the polarization of ferromagnetic materials not only on the 

applied (magnetic) field but also on their previous history.  

Magnetic domain, a region of ferromagnetic material within which atomic or molecular 

magnetic moments are aligned parallel.  

Permeability, a factor, characteristic of a material, that is proportional to the magnetic induction 

produced in a material divided by the magnetic field strength; it is a tensor when these quantities 

are not parallel. 

Consult Phys-102 book for more details discussion. 
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Type of Magnetism Susceptibility Atomic / Magnetic Behaviour 
Example / 

Susceptibility 

Diamagnetism 
Small & 
negative. 

Atoms 
have no 
magnetic 
moment 

 

Au 
Cu 

-2.74x10-6 

-0.77x10-6 

Paramagnetism 
Small & 
positive. 

Atoms 
have 
randomly 
oriented 
magnetic 
moments 

 

β-Sn 
Pt 
Mn 

0.19x10-6 
21.04x10-6 
66.10x10-6 

Ferromagnetism 

Large & 
positive, 
function of 
applied field, 
microstructure 
dependent. 

Atoms 
have 
parallel 
aligned 
magnetic 
moments 

 

Fe ~100,000 

Antiferromagnetism 
Small & 
positive. 

Atoms 
have 
mixed 
parallel 
and anti-
parallel 
aligned 
magnetic 
moments 

 

Cr 3.6x10-6 

Ferrimagnetism 

Large & 
positive, 
function of 
applied field, 
microstructure 
dependent 

Atoms 
have anti-
parallel 
aligned 
magnetic 
moments 

 

Ba 
ferrite 

~3 

Table 2: Summary of different types of magnetic behaviour. 

http://www.aacg.bham.ac.uk/magnetic_materials/type.htm#Diamagnetism#Diamagnetism
http://www.aacg.bham.ac.uk/magnetic_materials/type.htm#Paramagnetism#Paramagnetism
http://www.aacg.bham.ac.uk/magnetic_materials/type.htm#Ferromagnetism#Ferromagnetism
http://www.aacg.bham.ac.uk/magnetic_materials/type.htm#Antiferromagnetism#Antiferromagnetism
http://www.aacg.bham.ac.uk/magnetic_materials/type.htm#Ferrimagnetism#Ferrimagnetism


Prof. Dr. I. Nasser                                                              Phys 530                                                 28-Dec_2012 

calss-paramagn 

 3 

Model: Consider N identical, localized (i.e. distinguishable), practically 

static, mutually noninteracting and freely orientable dipoles at absolute 

temperature T and placed in an external magnetic field H pointing along 

z direction. Then the torque acting on the dipole is given by: 

,sin HH   and the (magnetic) potential energy can be 

written as: . cosH H       , where θ is the angle between the 

magnetic field and the dipole and μ is the magnetic dipole moment. 

/ 2 / 2

sin cos = ,zd H d H H

 

 

               μ H  

1- Qualitative Description: 

A non-interacting atom with magnetic dipole moment  ( is positive) 

could be point either parallel or anti-parallel to an external magnetic field H. At temperature T, 

we have the question: 

Q: What is the mean magnetic moment H  (in the direction H) of such an atom? 

A: There are two possible states, and they are: 

state condition Magnetic energy probability 

(+) H     (lower )HH        HP Ce 

   

(-) H     (higher )HH       HP Ce 

   

 

 is lower energy     atom is more likely to be found

 is higher energy    atom is less likely to be found












 

Define 

(magnetic) potential energy

  (thermal) translational energyB

H
H

k T


     

  is a dimensionless parameter which measure the ratio of the magnetic energy H , which 

tends to align the magnetic moment, to the thermal energy Bk T  , which tends to keep it 

randomly oriented. Then 
 

Case 1 1   1T   P P   0  is randomly oriented (disorder)H    

Case 2 1   1T   1, 0P P      (ordered)H H       

 

1- Qualitative Description: 

the mean magnetic moment H is given by: 

( )
tanhH

P P e e

P P e e

 

 

 
   



 



 

  
  

 
 

The ‘‘magnetization’’ oM , or mean magnetic moment per unit volume, is then in the direction of 

H and reads 

          for <<1 (high temperature)

                       for >>1 (low temperature)
o H

n H
M n

n

  


 


  


 

where n  is the total number of magnetic atoms per unit volume. The above results agree with 

the qualitative descriptions. Here, 
2

B

n

k T


   is the ''magnetic susceptibility''. The result 

1

T
  is 

d    

cos  

H  

  
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known as Curie's law. At very low temperature oM  becomes independent of H and equal to the 

maximum (or ''saturation magnetization”) magnetization which the substance can exhibit. 

Saturation magnetization means complete alignment of the magnetic dipoles in the field 

direction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure:  Total magnetic moment of a spin ½  paramagnet. 

 

Classically, the number of dipoles, dn, having axes within the solid angle d  lying 

between two hollow cones on semi-angles   and d   is given by: 

 cos cos 2 sinH Hdn Ce d Ce d Ce d            

Where C is a constant. Each one of these dipoles contributes a component of magnetic moment 

cos   to the magnetization, where as the components perpendicular to the field direction 

cancel each other. Hence the average component of the magnetic moment of each atom along 

the field direction multiplied by the number of atoms per unit volume, N, gives the 

magnetization, i.e., 

cos

0 0

cos

0 0

cos cos sin

cos

sin

H

H

dn e d

M N N N

dn e d

 

 

 

 

    

  

 

  
 

 

 

Let us define the ratio
(magnetic) potential energy

  (thermal) translational energyB

H
H

k T


    , and 

cos siny dy    , therefore: 
1

1

1

1

1 1
coth

( )

y

y

ye dy
e e

M N N N
e e

e dy

N L



 

 


   
 

 





 

   
       

   






 

0

0

( )          for <<1 (high temperature)
3

                                    for >>1 (low temperature)

o H

H

N L NM
N

H H
N




   



 






  

    
  


 

Example: A N-monatomic Boltzmann ideal gas of spin ½ atoms 

in a uniform magnetic field, in addition to its usual kinetic energy, 

a magnetic energy of B  per atom, where is the magnetic 

Magnetic saturation 

0 

0.5 

1 

0 5 10   

oM

n
 

T large, high disorder         T small, low disorder 

H larger → more ordered 
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moment. (It is assumed that the gas is so dilute that the interaction of magnetic moments may be 

neglected.)  

a- What is the partition function of the system?  

1 2

sp 2cosh( ),               Z e e e e       


       

1 2

1 2

sp

1
tanh( )

2cosh( )

e e
E e e

Z

 
  

   





    
 
 
 

 

and the total energy   tanh( )U N E N     . In summary: 

 
Quantity Formula 

Partition function 
sp N2cosh( ) 2 cosh ( )N NZ Z     

Helmholtz free energy ln( ) ln{2cosh( )}B N BF Nk T Z Nk T      

Entropy 
 

,

ln 2cosh( ) tanh( )B

V N

F
S Nk

T
  

 
    

 
 

Internal energy 

,

ln
tanh( )

V N

Z
U N H 



 
    

 
 

Heat capacity 22

2 2

,
cosh

B
V

H V N

NkU F
C T

T T





   
     

    
 

Total magnetic moment 

,

( tanh( )
V N

F e e
M n n

H e e

 

 

 
  





  
     

  
 

Notice: HU M   

 

Figure:  Heat capacity of spin ½  

paramagnet. (Schottky anomaly) 

 

 

 

 

 

 

 

 

 

 

 

Figure:  Total magnetic moment of a spin ½  

paramagnet. 
 

 

 

 

 

 

 

 

 

0 

0.

1 

0.

2 

0.

3 

0.

4 

0.

5 

0 1 2 3 4 5 


 

B

C

Nk
 

0 

0.5 

1.0 

0 5 10 T
 

M

n
 



Prof. Dr. I. Nasser                                                              Phys 530                                                 28-Dec_2012 

calss-paramagn 

 6 

 

 
 

Comments: 

1- For the internal energy: At low T , all the spins are aligned with the field and the energy per 

spin is close to H . However as increases, thermal fluctuations start to flip some of the 

spins; this is noticeable when Bk T is of the order of H . As T  gets very large, the energy 

tends to zero as the number of up and down spins become more nearly equal. 2 HP
Ce

P





 , 

so it never exceeds one. We can say that: at high temperature, the thermal energy is 

sufficient to disorder the magnetic dipole orientation. 

2- The heat capacity tends to zero both at high and low T . At low T  the heat capacity is small 

because Bk T is much smaller than the energy gap 2 H , so thermal fluctuations which flip 

spins are rare and it is hard for the system to absorb heat. This behavior is universal; 

quantization means that there is always minimum excitation energy of a system and if the 

temperature is low enough, the system can no longer absorb heat.  The high-T  behavior 

arises because the number of down-spins never exceeds the number of up-spins, and the 

energy has a maximum of zero. As the temperature gets very high, that limit is close to 

being reached, and raising the temperature still further makes very little difference. This 

behavior is not universal, but only occurs where there is a finite number of energy levels 

(here, there are only two). Most systems have an infinite tower of energy levels, there is no 

maximum energy and the heat capacity does not fall off.  
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3- It is not easy to attain the maximum of the paramagnetic heat capacity curve as the 

following calculation shows. The paramagnetic heat capacity becomes important only at 

very low temperatures. The maximum occurs at  1  , i.e. 
B

μ
1

H

k T
 . Now the magnitude of 

                                                     

24

23

B

μ 9.27 10
1

1.38 10k






 


 

       

so to get the maximum we must have        

maximum attainable fields are                  1 Tesla

so we need a maximum temperature of      1 K

H T

H

T







 

4- At zero temperature, the magnetization goes to N  and all the spins are up. There is an 

order, and so the entropy is zero. The stronger the field, the higher the temperature has to be 

before the spins start to be appreciably disordered. At high temperatures the spins are nearly 

as likely to be up as down; the magnetization falls to zero and the entropy reaches a 

maximum. The entropy of this state is ln 2BNk . Remember that, 2 is the total number of 

microstates.  

5- If it is possible to excite all the particles to the upper energy state so n N

 the system 

would again be completely ordered and in state of zero entropy. According the equation 

                                                        
1

N
n

e 



.  

This situation could only be achieved if the temperature T  approached a value of zero from 

the negative temperature side, i.e.  

                                                              
/( )

  at  0
1 Bk T

N
N T

e
 

 


.  

While a negative temperature of this magnitude is not obtainable in practice, it is possible to 

obtain finite negative temperatures as defined by the above equation. 
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Model: Consider N identical, localized (i.e. distinguishable), practically static, mutually 

noninteracting and freely orientable dipoles at absolute temperature T and placed in an external 

magnetic field H pointing along z direction. Then the torque acting on the dipole is given by: 

,sin HH   and the (magnetic) potential energy can be written 

as:  cos. HHE  , where θ is the angle between the magnetic field and the dipole and 

μ is the magnetic dipole moment. The partition function of the system, Z, is given by 

1

cos

sp

{ }

,

N

i

i

i

H

Z e
 






  

where the first summation for 
spZ  goes over all sets of orientations of the system. Classically 

one can have: 
2

cos cos

sp

0 0

sin
sin 4H HZ e d e d

 

   




   


      

Where 
B

H
H

k T


   . The mean magnetic moment M of the system will indeed be in the 

direction of the field H; for its magnitude we have: 

sp

1

lnln1
cos cos

N
N

z i
i

ZZ N
M N

H H
   

 


   

 
. 

Hence, we obtain the mean magnetic moment per dipole as: 

  ),(/1coth  L
N

M z

z
  

where L(x) is the Langevin’s function,  xxxL /1coth)(  . The dimensionless parameter 

H  determines the strength of the (magnetic) potential energy H  against the (thermal) 

kinetic energy kT . See the plotting of L(x) function. 

 
If we have n dipoles per unit volume in the system, then the magnetization of the system, viz. the mean 

magnetic moment per unit volume, will be given by: 

)( LnnM
zzn   . 

For )1)(,1(   L , i.e. the magnetic fields so strong (or temperature so low), we have the 

magnetic saturation:  

.,
zznz

nM    

For η << 1, i.e. the magnetic fields so weak (or temperature so high), we have:  

,
3

)
453

()1(
23

H
kT

n
LnLnnM

zzn


    

to the lowest order of approximation. So, the high temperature susceptibility of the system is, 

therefore, given by: 
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T

C

kT

n

H

M

H

zn 














3

lim
2

0


 . 

The last equation is the Curie’s law of paramagnetism and the parameter C being the Curie’s 

constant 

 

Appendix (1) 

General Calculation of Magnetization 
The problem of paramagnetism could be treated classically 

(Langevin's theory) or quantum-mechanically. Here, we are 

following the quantum mechanical treatment. Consider a system 

consisting of N non-interacting dipoles at absolute temperature T  

and placed in an external magnetic field H  pointing along  z-

direction (Note that: H  is the local magnetic field acting on the 

atom, i.e. it includes both external and field produced by all other 

atoms). Then the (magnetic) potential energy of a dipole can be 

written as: 

g g zJ H      μ H J H  

Here ,g og  ( o is the Bohr magneton = 
2 e

e

m
, e and 

em  are 

the charge and the rest mass of the electron, respectively) and is the Lande` g-factor, i.e. 

3 ( 1) ( 1)

2 2 ( 1)

S S L L
g

J J

  
 


 

 and S L being, respectively, the spin and orbital quantum numbers of the dipole and J  is the 

total angular momentum of the atom. In quantum mechanics, the values of zJ  are discrete and 

are given by: 

,                  , 1, , 1,zJ m m J J J J       

Thus there are 2 1J  possible values of m corresponding to that many possible projections of the 

angular momentum vector along the z- axis. The probability mP that an atom is in a state labeled 

by m is given by 

,z H

m z gP Ce m
     

The mean z  component of the magnetic moment of an atom is therefore: 

sp

sp

,                    

z

z

J
H

z J
Hm J

z

m J

e

Z e
Z







 



 


  

which could be simplified as: 

sp sp

sp

ln1 1 1
z

Z Z

Z H H


 

 
 

 
 

To calculate spZ , let us introduce the ratio 
B

H
H

k T


   , thus 

( 1)

sp

1

2

2

sinh( )

1 sinh( )

J JJ
m

J
m J

Je e
Z e

e

 


 

  





  


  

Then 

  

H  

J  

 

z  

m  
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spln1
( )z g J

Z
J B

H


  

 

 
 

 
 

Where ( )JB  is the Brillouin function and is given by 

1 1

2 21 1 1
coth( )

2 2 2 2

1
( ) =1      , 1

1
( ) ( )sinh( )

1
                         , 1

3

J

J
J

B J J
JJ




 

 

               


 

If there are n atoms per unit volume, the mean magnetic moment per unit volume (or 

magnetization) becomes 

                                    , 1

( ) 1
      =       , 1

3

g

zzn g J

g

n J

M n n J B J
n J H

 

  
   




     
 

 

 

and 2 ( 1)

3
g

B

J J
n

k T
 


  is the ''magnetic susceptibility''. The result 

1

T
  is known as Curie's 

law. In the case J   and 0g   but gJ and g  stay constants, ( )JB   tends to become 

independent of J  and identical with Langevin’s function ( )L  . 
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Appendix (2) 

Statistics of various ensembles 
 

1- The microcanonical ensemble:- Systems with fixed N  and V , and an energy lying within the 

interval 
1 1

2 2
( , )E E    , where E  . The total number of distinct microstates accessible 

to a system is ( , , ; )E V N  . From the equal a priori probabilities  

                                             
1

( , , ; )
kp

E V N

 

 

Thus all the states in the microcanonical ensemble appear with the same weight which implies 

that  

                                              ˆ
i i ii

p    

with the discrete eigenvalues ( )iE  lying within the range 
1 1

2 2iE E E      . 

                         
1

ˆ
( )

m i i i n mi in n mnmn i i
p p

E
         


   

with 

                                             

1
for each of the accessible states

( )

for all other  states

,  

0
n

Ep 



 


 

The entropy 

                                                ln ( )BS k E   

where ( )E  is now calculated quantum mechanically, taking into account the 

indistinguishability of the particles, which implies no paradox, such as Gibbs' paradox. Also, as 

0T  , system goes to the ground state which gives ( ) 1E   i.e. 0S   (third law of 

thermodynamics) 

                               

2 1 pure case, 
( )

2>1 mixed case (degenrate), , 0 

p p
E

p p S

 
  

  

 

 

2- The microcanonical ensemble:- Systems with fixed N , V and T and different energy E . The 

probability that a system, chosen at random from the ensemble, possesses an energy nE is 

determined by Boltzmaan factor nE
e


, and the density matrix in the energy representation is 

therefore taken as 

                                        ˆ
n mnmn

p   

with 

                                             ,              0,1,2,
nE

n

e
p n

Z



   

Thus density operator in the canonical ensemble could be written as:  

          

 

ˆ

ˆ

ˆ

ˆ

Tr

iE H

i i i i i i ii i
i

H

H

e e
p

Z Z

e

e

 





      
 





  



  
 

The expectation value ˆ
N

A   of a physical quantity A  is now given by 
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                                         
 
 

ˆ

ˆ

ˆTr
ˆ ˆ ˆTr =

Tr

H

HN

Ae
A A

e









  

the suffix N  here emphasizes he fact that the averaging has been done over an ensemble with 

N fixed. 

 

Example:  If 
1 0

ˆ ˆ
0 1

zH B B  
 

        
 

 B  find ˆ
z . 

Answer: 

   

ˆ ˆ 2 2 3 3

2 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

(

1 1

2! 3!

1 1

2! 3!

ˆ ˆ ˆ ˆ1

ˆ ˆ                     1 1

ˆ ˆ                     1cosh sinh

cosh 0
                     

0 cosh

zBH

z z z

z

z

B B B

B B B

B B

B

B

e e
 

  

  

 





  





      

     

 


( )

) ( )

sinh 0

0 sinh

0
                     

0

B

B

B

B

e

e











   
   

   

 
  
 

 

 

Note that: With the definition
1 0

ˆ
0 1

z
 

  
 

, one finds 

2 4 6

3 5 7

1 0 ˆˆ ˆ ˆ 1,
0 1

ˆ ˆ ˆ ˆ ,

z z z

z z z z

  

   

 
     

 

   

 

then 
ˆ

ˆ

ˆ

( )

( )

Tr( ) 2cosh

01
ˆ

2cosh 0Tr( )

H B B

BH

BH

B

B

e e e

ee

ee

  










 





  

 
    

 

 

 

 
0

0

1 0

0 1

1

2cosh( )

1

2cosh( )

2sinh( )
tanh( )

2cosh( ) 2cosh( )

ˆˆ ˆTr Tr

0
Tr

0

B B

z z

B

B

B

B

e

eB

B

e e B
B

B B

e

e

 














 

 





  
  
   
  





 
   

 

 
  

 

  

 

 

2 1

sp 2
0 0

1
(2sinh )

1
n

a
E a na

a a a
n n

e
Z e e e a

e e e


 

   

 
 

    
 

   


