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CLASSICAL LIMIT  
(Review and free reading) 

In classical mechanics we can specify simultaneously both iq and ip  for a particle. In quantum mechanics the 

uncertainty principle prevents this. A classical description is a reasonable approximation only when the effect of 
h is negligible, i.e. 

q p h    

Consider the motion of a molecule in a gas. If avp  denotes the mean momentum and avr  its mean separation 

from other identical molecules, then a classical description is valid when 

av avr p h  

or, Using De Broglei wavelength, /p h  , when 

av av

av av

           (classical limit);

           (quantum limit);

r

r







 

Since av  is a measure of the spread of molecule in space, it means that when av av  r   holds, the molecular 

wave functions do not overlap and therefore they are distinguished by their position. 

 
To give a physical content to av av  r  , we imagine that each particle occupies a tiny cube of side avr  and 

these cubes fill the volume V, 
1/3

3
av av,  

V
r N V r

N
    
 

 

If we anticipate and relate the temperature T with the average energy   by: 

 
2

1/ 2av
av

3
, 3

2m 2 B B

p
k T p mk T  �  

Where Bk  is the Boltzmaan constant, then 

 av 1/ 2
3 B

h

mk T
 �  

Therefore, the classical condition becomes 

 

1/3

1/ 2 
3 B

V h

N mk T

   
 

 

This means the classical description is valid when: 
1- N is small (dilute gas),   
2- T is large, and  
3- m is not too small. 
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For an ideal (Boltzmaan) gas consisting of N  indistinguishable molecules of mass m , we have 

23

1

,            
2

N
i

i i
i

p
E

m
 



   

And 
3

1 31 2

,
N

i
i iE

i

e e e e e e
 

   


  


   , 

The single-particle partition function (for 1N  )is 
2 3 3/ 2

( )2
sp 3 2

1 2
,               

i

i

p
QE pm

i Q i i i
i

nm
Z e e d V Vn d dp dq

h h n

  



 



   
          

  
   

where we replaced the sum over discrete states by an integral over the phase space. 
3/ 2

3 2

1 2
Q

m
n

h


 

 
   

 
 is 

called the “quantum concentration” and 
1

n
V

 is the concentration. The Qn  is the concentration associated with 

one particle in a cube of side 
2 B

h

mk T



 .  

 

Examples: 
(i) Molecules in a gas at NTP 

           

25 3

25 3

10

Using                                         10  molecules m ,

We have the available volume   10 m ,    

Using                                           10

We have 

molecules

molecule

molecule

V

r m

 










30 3the actual volume     10 mmoleculeV 

 

So, in gases, the volume of a molecule is usually being much smaller than the volume available to it, we can, in 
principle, identify each molecule in the gas. Therefore, the molecules are localized and distinguishable. 

 
(iii) Conduction electrons in metal 

           

28 3

28 3

Using                                                 10  electrons m ,

We have the available volume           10 m ,   

Using                                                  

electrons

electron

e

V

r

 







9

27 3

10 m
2 (1eV)

We have the actual volume             10 m

lectron

electron

h h

p mE

V





  



 

So, in metals, the volume of the electron is larger than the available volume. Hence the electron wave functions 
overlap considerably. We can not localize the electrons, they are indistinguishable, and quantum statistics must 
be applied. 
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(iii) We can also use the above analysis to estimate a transition temperature for the onset of quantum 
effects. For example we take He atoms in a fluid phase and conduction electrons in an alkali metal. 

From 
 

1/3

1/ 2
3 B

V h

N mk T

   
 

 we get: 

 

       

 
 

 K103electron m 101  electronsfor 

 K10atom m 105 atoms for He

atoms  He,m K 101.6

electrons ,m K 102.1

3

51329

1329

23218-

23214

322





































T
N

V

T
N

V

VN

VN

V

N

mk

h
T

B

 

So we can see that at room temperature a classical treatment of atomic fluids is allowable whereas we must use 
a quantum description of electrons in a metal up to a very high temperature. Gases at room temperature have a 
density 1000 times less than a fluid and so will have a transition temperature even lower than 10 K. They can 
clearly be treated as classical under most conditions. 
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Quantum Statistics with examples 
  
Let us consider a system consisting of non-interacting molecules,  denoted by a, b, c …., whose energy levels 
are given by Ea, Eb, Ec, …In the classical statistical mechanical treatment of ideal gases, the 
particles/molecules/atoms are assumed to be distinguishable. Therefore, every possible occupation of energy 
levels by particles is admissible. Hence the following decomposition of the Hamiltonian, total energy and the 
partition function holds good. 
                                     ..... cba HHHH  

                                    .... cba EEEE  

                                    
E

a
a

q e   a   ,               E
b

b

q e   b  

                           .....cba qqqQ          where a, b, c etc are the particle indices.   

 
Owing to the distinguishability of the particles ‘a’ and ‘b’, arrangements I and II are different and each should 
be counted separately.  
          However, when particles are indistinguishable, the arrangements I and II are one and the same and hence 
should be counted only as one arrangement. Evaluating the total partition function as 
                                                   .....cba qqqQ                                                          

 is incorrect as it has those extra terms.  
…………………………………………………………………………………………….... 
Justification: 
I.  Take five balls that are distinguishable. 
 
       
 
 
The total number of ways in which the balls can be arranged in three levels such that 

2 balls in level 1 
2 balls in level 2 

                                                                            1 ball in level 3 

are   30
!1!2!2

!5
  

Generically, 
!..!!

!

321 nnn

N
where ...,, 321 nnn  are the numbers of balls occupying levels 1, 2, 3.. etc respectively. 

 1  2  3  4  5 
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II. Supposing the balls were indistinguishable, 
 

 
 
 
Then the number of ways is which the above arrangement can be done is just 1! 
         Supposing an arrangement with only one ball occupying each level is desired, then again there only one 
possible way to obtain it in the indistinguishable balls case. Whereas with distinguishable balls there are !N  
possible ways of obtaining this arrangement. 
Therefore, classical statistics vastly over-estimates the number of configurations. In classical statistical 
mechanics, this is of course taken into account by the 1/ !N terms (Boltzmann factor) in front of the partition 
function. This method does not work at low temperature where quantum nature of the particles become 
important that impose further restrictions on the occupancy of the energy levels of the system. In a system of 
Bose particles, any number of particles can occupy any given energy level. On the other hand, particles obeying 
Fermi-Dirac statistics,  maxium of one particle can occupy a given energy level. That is, the occupation number 
of a given energy level can be 1 or 0. 
……………………………………………………………………………………………… 
High Temperature Limit 
         When the temperature is high, a system has a large number of accessible energy states such as 
translational, rotational, electronic…. The number of states is much more than the number of atoms/molecules. 
At high temperatures, a large number of states become accessible, especially the translational states. In such a 
case, the possibility of multiple occupancy of a state will be greatly reduced. Thus the occupied energy levels 
are mostly non-degenerate. Thus, the occupation due to quantum statistics is not important and classical 
Boltzmann statistics works well.  This is exactly like case II in justification. So the surplus contributions that 
will feature for the indistinguishable particles in the expression  
                                                 .....cba qqqQ   

N! compared to distinguishable particles.  
         For an ideal gas the atoms/molecules are independent (negligible intermolecular forces) and 
indistinguishable. In the expression 
                                                   NqQ   
there are N! surplus contributions in the thermodynamic limit for an ideal gas. Thus the exact partition function 
for an ideal gas in this limit is 

                                                                                               (1)
!

Nq
Q

N
   

         In the thermodynamic limit, 13 n  (where n is the number density,   is the de-Broglie wavelength, 

2

1
2

2 









Tmk

h

B
  and 3n  is a dimensionless quantity) because m >> 1, T >> 1 and n << 1. This is the classical 

regime where Maxwell-Boltzmann statistics holds good and indistinguishability can be exactly accounted for. 
But as we go on to low temperatures and high densities multiple occupancy of states increases. 13 n  is in 
this limit. Under such conditions, the indistinguishability of particles becomes much more significant. This is 
where the quantum effects creep in and there is need for a revised statistics. 
 

-------------------------------------(   End the free reading    )----------------------

          



Prof. Dr. I. Nasser                                       Phys530, T152                                             3-Oct-17 
QS_examples 

7 
 

Quantum Statistics (Chapter 6_Pathria) 
         All known indistinguishable particles, fall in to the class of either Fermions or Bosons. These two 
statistics or distributions lay different constraints on the occupancy of a particular state but under the 
conservation of two quantities, the total number of particles and the total energy. 
                                               Nn

i
i   ,        En i

i
i    

These constraints become very significant when there is degenerate/multiple occupancy of 
energy levels. 
 To understand the effects of these statistics on the distribution of energy 
levels, we first group the energy levels with energy within a small interval together and 
assign a degeneracy factor to each group according to the number of energy levels in each 
group. Let us denote the energy and degeneracy of i-th group by εi  and ig  , respectively. The 

picture aside illustrates the grouping. 
                                
                                                           
Ideal Fermi-Dirac Gas (Fermions):  Fermions obey the condition on the occupation of a state is that: a 

state can have 1 particle or 0 particle in it, but never two or more (i.e. 1,0in ). So, in  is always less than or 

equal to ig . This is because they obey the Pauli exclusion principle. 

  

                                                        1,0in         

 
Let in  be the number of particles occupying an energy level i  in a particular configuration. If ig is the 

degeneracy of i  , ( i ig n  ), then the number of possible arrangements amongst the degenerate levels of i  is  

                                             
( )
FD

!
                                               (2)

!( )!
ii i

i i i i

g g
w

n n g n

 
     

 

(This is exactly like picking ‘n’ white balls out of ‘g’ white balls.) 
 

Partition function: That is, a particular possible state will be either occupied or unoccupied, so that 1,0in .  

 

1 1 2 2

1 2 1 2

1 1 2 2

1 2

1 1 1 1
( )

Fermions
0 0 0 0

1 1

0 0 0

1 ,

s s
s

s

n
n n

n n n n

N N

n n s

Z e e

e e e

 
  

   


  

   


 

  


 

           
      

   

  

 


 

 
0

ln ln 1 s

s

Z e 






   

It follows that, the mean energy and the mean occupation number of a given state are: 

0

ln 1 ln 1
,

1 1

s

s s

s
s

s s

eZ Z
u n

e e



 


  



 


 
     

     
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Ideal Bose-Einstein Gas (Bosons): Bosons obey this statistics. There is no constraint on the occupation 
of a particular state in an energy level as these particles do not obey the Pauli principle.  Any number of 
particles can occupy a state in an energy level. 
                                              in 0, 1, 2, 3,…… 

                                                max
in  

Let in  be the number of particles occupying an energy level i  in a particular configuration. If  ig  is the 

degeneracy of i , then the number of possible arrangements amongst the degenerate levels of i  are 

 

                                          
( )
BE

1 ( 1)!
                              (3)

!( 1)!
i ii i i

i i i

n g n g
w

n n g

    
     

 

…………………………………………………………………………………………….... 
Justification: 
         Suppose we take five indistinguishable balls (bosons, in ) and arrange them into three distinct boxes 

(degenerate levels, 3ig  ) with no restriction on the occupation numbers in each box. 

 
 

 
             Box 1                  Box 2                Box 3 
 
Here there are five balls and two sticks (the number of sticks will always be one lesser than the number of 
degenerate levels). The total number of possible arrangements for the balls in the boxes is 

                                                 
( 1)! (5 3 1)! 7!

21
!( 1)! 5!2! 5!2!

i i

i i

n g

n g

   
  


 

We are justified in doing )!1( ig  because only the boxes are distinct, the sticks are not. The sticks are 

indistinguishable.  
Partition function: Consider the situation where the mean occupation number of a given state is independent on 
the mean occupation numbers of the other states. That is, each occupation number may range from zero to infinity, so 
that Ns = 0,1, 2, …..  

We have   EN (n1,  n2,  n2,  n3...)  =  ∑i  ni εi 
 

However, the normalisation, N  =  ∑i  ni,  is no longer required because the number of photons is fluctuating. 
The partition function can therefore be rewritten as: 

1 2 3 1 2 3,  

e  e
i i i i

i i

n n

N
n ,n ,n n n n

Z
     

  


  

Where   0,1,2,in   . So,  

1 1 2 2

1 2 1 2

1 1 2 2

1 2

( )
B osons

0 0 0 0

0 0 01

e ,

s s
s

ij i

ij

n
n n

n n n n

nn n

n n ni

Z e e

e e

 
  

    

   
  

   

  
 

  


 

          
      

   

  

 


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Now, 

20

0

1
e e e e                   (sum of a geometric series)

1 e
ij i i i

i

ij

n

n

   



  




    
   

So,  

Bosons
0

1
    

1 e i
i

Z 







  

and 
 

 
0

ln ln 1 s

s

Z e 






    

It follows that, the average occupation number 

,

1 ln 1 1 1
ln ln(1 e )

1 e

1 e 1
                    
1 e e 1

r

r

j i

i

i i

N
i

r ri i iT

Z
n 


 



 

     













                 

 
 

 
 

 the mean energy of a given state are: 

0

ln
,

1

s

s

s

s

eZ
u

e














  

   

 

the mean occupation number of a single-particle state with energy s is given by 

1 ln 1

1ss
s

Z
n

e   


  

 
 

 
Example: Compare the Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics when four particles are 
arranged in two energy levels. Three particles are at energy level ε1 having a degeneracy g1 = 4 and one particle 
at energy level ε2 having a degeneracy g2 = 2.  
Solution:  
Note that:   1 3n  ,  1 4g  ,  2 1n  , 2 2g   

 

3 1

1

1

1

4 2
! 4! 512

! 3!1!

( 1)! (3 4 1)! (1 2 1)!
40

!( 1)! 3!3! 1!1!

! 4! 2!
4

!( )! 3!1!1!1!

inm
i

MB
i i

m
i i

BE
i i i

m
i

FD
i i i i

g
w N

n

n g
w

n g

g
w

n g n








  

     
  



  








 



Prof. Dr. I. Nasser                                       Phys530, T152                                             3-Oct-17 
QS_examples 

10 
 

Classification 

Maxewll-Boltzmann statistics This is the classical statistics and is applicable for a system of independent, 
distinguishable (or indistinguishable) and identical particles. No restriction about the symmertry, spins, etc. 
Bose-Einstein statistics is applicable for a system of independent, indistinguishable and identical particles of 
integral spin (like photons). There is no restriction on the number of particles present in any given quantum 
state. 
Fermi-Dirac statistics is applicable for a system of independent, indistinguishable and identical particles of 
half-integral spin (like electrons). In this statistics, a given energy state can be occupied at best by one particle 
only. 

 B.E. (Bosons) F.D. (Fermions) M.B 
Particles Indistinguishable Indistinguishable Distinguishable 
Wave-
functions 

Symmetric Antisymmetric Any 

Spin 0, , 2 ,    
1 3

2 2
, ,    Any 

Examples photons,  -meson, 4 He  electron, proton, , 3 He  Any 

in  0, 1, 2, ..... 0, 1 0, 1, 2, ..... 

( )i  ( 1)!

!( 1)!
i i

BE
i i

n g

n g
  




 
 

!

! !
i

FD
i i i

g

n g n
 


 (*)

!

in
i

MB
i

g

n
   

  
1

r

BE BE
i




   
1

r

FD FD
i




   
1

r

MB MB
i




   

i

i
i g

N
f )(  

1

1

 ie   
1

1

 ie   ie   

Applications Photons of radiation,  
gas molecules at very 
low temperature.) 

Free electrons in metal and semi- 
conductor (except at very High 
temperature.) 
 

Gas molecules (except near 0 
K), electrons at Extremely 
High temperature. 

(*) corrected by ''correct Boltzmaan counting'' i.e. divided by N!. This correction does not correspond to any 
physical property of the particles in the system. It is just a rule that defines the mathematical model for 
Indistinguishable particles.  
** Define the dilute gas, dilute means that for all energy levels, the occupation numbers are very small 
compared with the available number of quantum states (i.e. most quantum states are empty). We assume that 

        for all j jN g j . 

This condition holds for real gases except at very low temperatures. 
For dilute gas one finds 

1 !

iNr
i

FD BE MB
i i

g

N
  



    

Simply we can have 

 

1 for FD statistics
1

, 1 for BE statistics

0 for MB statistics
j

j
j

j

n
f a

g e a
  


   

 

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Three Distributions 

 
 

The mean occupation number sn  of a single-particle energy state s  in a system of noninteracting particles: curve 1 is 

for fermions, curve 2 for bosons, and curve 3 for the Maxwell–Boltzmann particles. 
 
See Partia Page 150 for the comments 
 

i- In the Fermi–Dirac case (a =1), the mean occupation number never exceeds unity, for the variable sn  

itself cannot have a value other than 0 or 1. 
ii- In the Bose–Einstein case (a =-1),  the occupancy of that particular level becomes infinitely high. As in 

the case of Bose–Einstein condensation. 
 
 
Example: Consider the case of 3,N   1 2n  in 1 , 2 1n   in 2 , 1 2g   and 2 1g  . Compare the Maxwell-

Boltzmann, Bose-Einstein, and Fermi-Dirac statistics. 
 
Solution:  
 

2 1

1

1

1

2 1
! 3! 12

2! 1!

( 1)! (2 2 1)! (1 1 1)!
3;

!( 1)! 2! 1! 1! 0!

! 2! 1!
1;

!( )! 2! 0! 1! 0!

in
i

MB
i i

i i
BE

i i i

i
FD

i i i i

g
w N

n

n g
w

n g

g
w

n g n








  



     
   

  

   
  







            

 

1 0   

2    

1 2n 

2 1n   
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Example: Consider a system of two non-interacting, and identical particles in a volume V. Each particle has 
three accessible energy levels ε1 = 0, ε2 = 1ε, and ε3 = 2ε. The lowest energy level is doubly degenerate. 
Determine the partition function and the mean energy of the system if: 

A. the particles are distinguishable and obey the classical Maxwell-Boltzmann statistics. 
B. the particles obey Fermi-Dirac statistics. 
C.  the particles obey Bose-Einstein statistics. 
D. Determine the high temperature limit of the mean energy of the above three cases. Comparing the results 

what can you conclude about the behavior of fermions and bosons in this limit?  
Solution:  
 

A- Maxwell-Boltzmann Statistics: We have the following distributions: 
Energy Macrostates    

 1 2 3 4 
2ε 0 0 0 0 
 ε 0 0 0 0 
0 ab 0 0 ab a b b a 

 

Total 
Energy = 

0 0 0 0 

 
Energy Macrostates    

 5 6 7 8 
2ε 0 0 0 0 
ε b a b a 
0 a 0 b 0 0 a 0 b 

 

Total 
Energy = 

ε ε ε ε 

 
Energy Macrostates     

 9 10 11 12 13 
2ε b a b a 0 
ε 0 0 0 0 ab 
0 a 0 

 

b 0 0 a 0 b 0 0 
 

Total 
Energy = 

2ε 2ε 2ε 2ε 2ε 

 
Energy Macrostates   

 14 15 16 
2ε b a ab 
ε a b 0 
0 0 0 0 0 0 0 

Total 
Energy = 

3ε 3ε 4ε 

 
The total number of macrostates = gN=42=16. 
The partition function is: 
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31 2 4 2 3 44 4 5 2 4 4 5 2i o
MB i

i

Z g e e e e e e e e e e                          

  
2 3 4

2 3 4

1 4 10 6 4 3
( )

4 4 5 2 2MB

Z e e e e
U as T

Z e e e e

   

   

    


   

   

   
    

    
                            

 
B- Fermi-Dirac Statistics: We have the following distributions: 

Energy Macrostates      
 1 2 3 4 5 6 

2ε 0 0 0 a a a 
ε 0 a a 0 0 a 
0 a a 

 

a 0 0 a 0 a 0 a 
 

0 0 
 

Total 
Energy = 

0 ε ε 2ε 2ε 3ε 

 
The partition function is: 

31 2 2 32 2 1 2 2i o
FD i

i

Z g e e e e e e e e                        

)(
2

3

221

3421
32

32









 



Tas
eee

eeeZ

Z
U FD 

 



            

C- Bose-Einstein Statistics: We have the following distributions: 
Energy Macrostates     

 1 2 3 4 5 
2ε 0 0 0 0 0 
 ε 0 0 0 a a 
0 aa 0 

 

0 aa a a a 0 0 a 
 

Total 
Energy = 

0 0 0 ε ε 

 
Energy Macrostates     

 6 7 8 9 10 
2ε a 2 0 a aa 
ε 0 0 aa a 0 
0 a 0 

 

0 a 
 

0 0 0 0 0 0 
Total 
Energy = 

2ε 2ε 2ε 3ε 4ε 

The partition function is: 
31 2 4 2 3 43 2 3 3 2 3i o

BE i
i

Z g e e e e e e e e e e                              

2 3 4

2 3 4

1 2 6 3 4 3
( )

3 2 3 2BE

Z e e e e
U as T

Z e e e e

   

   

    


   

   

   
    

    
   

      
d- In the high ( T , β -> 0) temperature limit fermions and bosons behave as classical Boltzmann particles. 
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Example: Consider a system of two particles in a volume V, each of which can be in any one of  three quantum 
states of respective energy ε1 = 0, ε2 = 1ε, and ε3 = 3ε. The system is in contact with a heat reservoir at 
temperature 1( )T k  . Write an expression for the partition function if the particles obey: 

1- the classical Maxwell-Boltzmann statistics and are consider distinguishable. 
2- the classical Maxwell-Boltzmann statistics and are consider undistinguishable. 
3-  the particles obey Fermi-Dirac statistics. 
4- the particles obey Bose-Einstein statistics.  

Solution:  
 
 

Configuration Number of states 
0 1ε 3ε total MB BE FD 
xx   0 
 xx  2 ε 
  xx 6 ε 
x x  1 ε 
x  x 3 ε 
 x x 4 ε 

1 1 -- 
1 1 -- 
1 1 -- 
2 1 1 
2 1 1 
2 1 1 

 

  ( )

2 6 3 4

2 6 3 4

3 4

1 2 2 2

1

s s
s i

i

i

i

n

MB i
n i energy levels

BE i
i

FD i
i

Z e g e

e e e e e

Z g e e e e e e

Z g e e e e

 


    

     

   




    

     

   


 

     

      

   

 




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           The total number of arrangements possible for a particular configuration for both   F-D as well as B-E are 
(this is over all the energy levels of a particular configuration) 

                                                  ( ) ( )                       (4)i
i i

i
W n w n   

The total number of arrangements possible over all configurations is  

                                                 
 

( , , ) ( )                      (5)i
n

N V E W n  
i

 

where ),,( EVN is the partition function in microcanonical ensemble. 
Thus the entropy is                                                      

                                                     ln ln                     (6)B B iS k k W n     

                                                       
Maximizing the entropy and finding out the maximum term by Lagrange’s method of undetermined 
multipliers. 

                                  ln 0                     (7)i i i i
i i

W n n n             
 

                                             )()(
i

i

i
i nwnW   

                                          ( ) ( )ln ln ( ) ln ( )i i
i i i

i i
W n w n w n          

 

                                        ( )ln ln ( )                       (8)i
i i

i
W n w n     

    For F-D statistics,                  

                                                  
)!(!

!)(

iii

ii

ngn

g
w


  

( )ln ln ! ln ! ln( )!

ln

i
i i i i

i i i

w g n g n

g g g

   

  lni i in n n  ( ) ln( )i i i i ig n g n g    in

ln ln ( )ln( )

ln ln 1 ln 1 (9)

i i i i i i i i

i i i i i
i i i i

i i i i i

g g n n g n g n

g g n n g
g n g n

g n n g n

    

       
                     

 

       
For B-E statistics,  

                                          
)!1(!

)!1()(





ii

iii

gn

gn
w  

( )ln ln( 1)! ln ! ln( 1)!

( 1)ln( 1)

i
i i i i

i i i i i

w n g n g

n g n g n

     

      ig 1 lni i in n n  ( 1)ln( 1)i i ig g g    1

( 1)ln( 1) ln ( 1)ln( 1)

( 1) ( 1)
ln ( 1)ln ln 1 ln 1              (10)

( 1)

i i i i i i i i

i i i i i i
i i i i

i i i i

n g n g n n g g

n g n g g n
n g n g

n g n g

        

      
              

 

General form of )(ln iw  for F-D and B-E statistics is 
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                       ( )ln ln ln 1                          (11)i i i i
i

i i

g g n
w n a a

n a g

   
       

   
 

                        where         1a    for BE 
                                          1a      for FD                                                        (12) 
                                          0a     for MB 

                    

2
( ) 1 1

ln ln ln
1 1

1
ln

1

i

i ii i i i i
i i i

i i ii i ii

i i ii

i

ii

i

g a
ng g g g g

w a n n a n
n g nn a n ng a a aa g n gn

g
a

nn a
g

  

                                                                         

 
 
   
  
 






1

1 i

i

n
a

g

 
 
 
  
 

ln             (13)i
i i

i

g
n a n

n
 

 
               
 

 

                                   
                                                                
From eqns (7) and (8), 

                         0ln 



  ii

i
i

i
i nnnW                 ( )ln ln ( )i

i i
i

W n w n     

Thus, 

                          0ln 
















 ii

i

i

i
na

n

g
                        0ln 








 i

i

i a
n

g
  

                                   (15)
i

i
i

g
n

e a 


 


 

 

in  is the distribution that maximizes the entropy. Hence 

   ( )ln ln ( )i
i i

i
B

S
W n w n

k
     

                               
From eqn (11) 

ln ln 1 ln ln 1
i

i i i i i i
i i

i iB i i i i

S g g n g g g e
n a a n a

k n a g g e a g

 

 


 



          
                

          
 

i

 

                                

            



  

i

i
ii

B

ae
a

g
n

k

S
)15()1ln()( i  

 
                                     Nn

i
i       ;    En i

i
i    

                             
i

i
B

aeg
a

EN
k

S
)1ln(

1
i  
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TkB

    ;    
TkB

1
  

Thus, 

                                
i

i
BBB

aeg
aTk

E

Tk

N

k

S
)1ln(

1
i

 

From thermodynamics, 

                              )16(
)(





Tk

PV

Tk

TSEG

Tk

E

Tk

N

k

S

BBBBB


 

Equation of state for a quantum ideal gas is 

ln(1 )                     (17)B
i

i

k T
PV g ae

a
     i  

                                     
In the high temperature limit,  

0,   
Hence Taylor expansion can be done, xx  )1ln(  

                                           i eag
aTk

PV

i
i

B

1
 )18(  ieg

i
i  

For an ideal gas with Maxwell-Boltzmann distribution, the equation of state is 

                                                   Nn
Tk

PV

i
i

B

         (Ideal gas law)  

But from eqn (14)                                                 

                                             
i 

 
e

g
n i

i  

Thus,  

                                            )19(  ieg
Tk

PV

i
i

B

 

 (Compare eqn (18) and (19)). Irrespective of whether it is a Bose gas or a Fermi gas, in the thermodynamic 
limit it goes over to Maxwell-Boltzmann distribution. 
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Bose-Einstein 

 
The grouping of the single-particle energy levels into “cells.” 

At energy j  there are jN particles divided among gi states. How many ways can they be distributed? Consider 

jN particles and 1jg  barriers between states, a total of 1j jN g  objects to be arranged. How many 

arrangements?  
 
Bose-Einstein 

1 2
1

( 1)!

!( 1)!

( 1)!
( , , )

!( 1)!

j j
j

j j

n
j j

BE n
j j j

N g
w

N g

N g
w N N N

N g

 




 
 


 

1 1 1

1 1

1

ln ln( 1)! ln ! ln( 1)!

[( 1) ln( 1) ( 1)] [ ln ]

[( 1) ln( 1) ( 1)]

n n n

BE j j j j
j j j

n n

j j j j j j j j j
j j

n

j j j
j

w N g N g

N g N g N g N N N

g g g

  

 



     

         

    

  

 



 

1

1

1

ln [( 1) ln( 1) ln ( 1) ln( 1)]

( 1)
ln ln( 1) ln

( 1)

ln ln

n

BE j j j j j j j j
j

n
j j j

BE j j j j
j j j j

n
j j

BE j
j j

w N g N g N N g g

N g N
w N N g N

N g N

N g
w N

N

 

 







        

  
      

   
  

       






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Constraints (Lagrange Multipliers) 

1 1

1

ln 0

ln 0

ln 1 0

n n

BE j j j
j j

n
j j

j j
j j

j
j

j

w N N

N g
N

N

g

N

   

  

 

 



 
   

 
  

        
 
     

 

 

  

1
1 1

1
j j

j

j j j
j

j j j

g g N
e e f

N N g e

   
 

 
      


 

Boltzmann Distribution 

1
ln j

j

j j
j j

j j

N N
e f

g g e

 
    


 
        

 
 

 
Fermi-Dirac 

At energy j there are jN particles divided among gi states, but only one per state. j jg N .  How many ways 

can the jN occupied states be selected from the jg  states?  

1 2
1

!

!( )!

!
( , , )

!( )!

j
j

j j j

n
j

FD n
j j j j

g
w

N g N

g
w N N N

N g N




 


 

1 1 1

1
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Quantum Statistics 

When taken to classical limit quantum results must agree with classical. B-E and F-D must approach Boltzmann 
in classical limit. What is that limit?  
Low particle density! Then distinguishability is not a factor. 
Classical limit 
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