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CLASSICAL LIMIT
(Review and free reading)
In classical mechanics we can specify simultaneously both g, and p, for a particle. In quantum mechanics the

uncertainty principle prevents this. A classical description is a reasonable approximation only when the effect of
h is negligible, i.e.

AgAp >>h
Consider the motion of a molecule in a gas. If p, denotes the mean momentum and r,, its mean separation
from other identical molecules, then a classical description is valid when

FoPo >>h
or, Using De Broglei wavelength, p =4 /A, when
r,>> A, (classical limit);
r, << A, (quantum limit);

Since A, 1s a measure of the spread of molecule in space, it means that when 7,, >> 4, holds, the molecular
wave functions do not overlap and therefore they are distinguished by their position.

Particls

Particle Particle

Fav <
4+—>
QM View Classical View
Unlocalized particle Localized particle

To give a physical content to r,, >> 4,

av 2

we imagine that each particle occupies a tiny cube of side r,, and

1/3
ra3vN =V, T, = (V—j

these cubes fill the volume ¥,

N
If we anticipate and relate the temperature 7 with the average energy £ by:
2
p _ 3 1/2
Mre=—k,T, U(3mk, T
m 5B Py ( B )
Where k, is the Boltzmaan constant, then
h
ﬂ“av D 1/2
(3mk A )

Therefore, the classical condition becomes

V 1/3 h
5 b
N (3mk ,T)

This means the classical description is valid when:
I- Nis small (dilute gas),

2- Tis large, and

3- mis not too small.
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For an ideal (Boltzmaan) gas consisting of N indistinguishable molecules of massm , we have

3N p2
E=) ¢, g =
IZ:; l 2m
And
’ﬁ%%a

e*ﬂE —e — e_ﬂgl e—ﬂgz e*ﬁgz v — H e*ﬁgf ,
i

The single-particle partition function (for N =1)is

2 3 3/2
i~ W 27zm n
— 2m — -BE(p;) — — — _Q —_
ZSP_Ze = [J;e dl“l} _V(hzﬂj =Vn, = L dl', = dp,dq,
1 2 3/2
where we replaced the sum over discrete states by an integral over the phase space. n,, =?=[ h?;j is

is the concentration associated with

: 1. :
called the “quantum concentration” and »n = a is the concentration. The n,

h

\27mmk ;T '

one particle in a cube of side 4 =

Examples:
(1) Molecules in a gas at NTP
Using Lrrosecnses =107 molecules m™~,
We have the available volume V', ... =10"m’,
Using 7o =1070m
We have the actual volume |4 =107"m’

molecule
So, in gases, the volume of a molecule is usually being much smaller than the volume available to it, we can, in
principle, identify each molecule in the gas. Therefore, the molecules are localized and distinguishable.

(ii1)  Conduction electrons in metal

Using Loseerms =107 €lectrons m™,
We have the available volume V ieon =1072°m’,
Using Fotoern = b " om
p J2mE(leV)
We have the actual volume V =10""m’

electron
So, in metals, the volume of the electron is larger than the available volume. Hence the electron wave functions
overlap considerably. We can not localize the electrons, they are indistinguishable, and quantum statistics must
be applied.
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(ii1))  We can also use the above analysis to estimate a transition temperature for the onset of quantum
effects. For example we take He atoms in a fluid phase and conduction electrons in an alkali metal.

1/3
h
From (—j >>———— we get:
N (3mk ,T')

2 2/3
(1
3mk, \V

_ J1.2x107™(N/7 }” K m?, electrons
1.6x10"*(N/V " K m®, He atoms

for He atoms% ~5x10” m’atom™ = T ~10K

for electrons % ~1x107% m’ electron™ = T ~3x10° K

So we can see that at room temperature a classical treatment of atomic fluids is allowable whereas we must use
a quantum description of electrons in a metal up to a very high temperature. Gases at room temperature have a
density 1000 times less than a fluid and so will have a transition temperature even lower than 10 K. They can
clearly be treated as classical under most conditions.
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Svmmetry of wave functions: Matter waves are described by a complex valued wave

function 'T'(r. f) cbeving the Schrodinger eguation

AT(r.f) = ET(r.f), = :—;—:ﬂ?] +1Mr). E= m%
which is the fundamental equation in guantum mechanics. The simplest of NV identical
noninteracting particles could be described by the Sclredinger equation
3

- - il FE
H‘lIl = EIII, H = ‘ 2_?:;!- -Ir = II‘{FI,F},---:-"‘.\:} #
iml

1.1=he1'ep,?" = p; = pj. and p; 13 the momentum operator of the ith particle. The Hamiltonian 15
independent of the positions of the particles or any other coordinates. e.g., spin, 1f any.

Introduce the permutation operator _F‘ which interchanges particle § with particle j, i.e.
ri — rj. For example:

F]]'I'a(l}'l'.ﬁ(l} = "Ta(2)Ts(1) or F‘l!'l'{l._?} ="T(2.1)
The Hamiltonian H is tnvariant under all permutation of the identical particles:
PHP! =H = PHP'P=HP = [I-:r__P]=U
The eigenstates of H should also be eigenstates of P.In general, the single product wave
function

N
T = "T(r,F, .. Fy) = ]___[ Frlri)
i

is not an eigenstate of P. An eigenstate must satisfy
PT(¥) = pT(r) = P*T(r) = pPT(¥) = p*T' ()
J-:’2=i=>p2=1==-p=il
then
P‘I'U') = 'T'(¥) = Symmetric wavefunction
Pr(r) = —'T'(r) = Antisymmetric wavefunction
It is & law of nature that the symmetry (5) or antisymmetric (4) voder the interchange of

two particles 15 a property of the particles themselves.
Example, for two-particle system we have

T(1.2) = To(1)Ts(2) (classical) #
PO(1.2) = TO21) = %[-1-‘,(1}-1-5{2} £ T,(2)T5(1)]  (symmetric)

T

PHl(1,2) = (2, 1}=%:'1‘,{1‘1'1‘5[2‘1—'1‘3{2‘1'1‘5{13] (antisymmetric) ¥

For N fermions, we have the Slater’s determinant

Tall) Tal2) - - Tal)
To(l) Tp2) - - TaV)
P2 = | : S #
(1L.2) = —=
Ir_[l':l LIJ:[E:I Ir_[_\vljl

Due to Pauli, with interchanges all the coordinates of the particles, then identical particles
could be divided info two groups, Bose gas and Fermi gas. The following table shows the main
properties of each system plus the vnnatural gas, Boltzmann gas.
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Quantum Statistics with examples

Let us consider a system consisting of non-interacting molecules, denoted by a, b, ¢ ...., whose energy levels
are given by Es E» FE. ...In the classical statistical mechanical treatment of ideal gases, the
particles/molecules/atoms are assumed to be distinguishable. Therefore, every possible occupation of energy
levels by particles is admissible. Hence the following decomposition of the Hamiltonian, total energy and the
partition function holds good.

; P S
qa:Ze—ﬁEa ) szz e Fre

a b

0=9,9,9.... where a, b, c etc are the particle indices.
+ 2 i 2

I 1 —
a b a b
I 11
Owing to the distinguishability of the particles ‘a’ and ‘b’, arrangements I and II are different and each should
be counted separately.
However, when particles are indistinguishable, the arrangements I and II are one and the same and hence
should be counted only as one arrangement. Evaluating the total partition function as

0= qaqch><

is incorrect as it has those extra terms.

Justification'
. Take five balls that are distinguishable.

The total number of ways in which the balls can be arranged in three levels such that
2 balls in level 1
2 balls in level 2
1 ball in level 3

5!
ar —=
2121
: N! . .
Generically, ————where n,,n,,n,... are the numbers of balls occupying levels 1, 2, 3.. etc respectively.

n!n,!n,!l..
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I1. Supposing the balls were indistinguishable,

0000

Then the number of ways is which the above arrangement can be done is just 1!

Supposing an arrangement with only one ball occupying each level is desired, then again there only one

possible way to obtain it in the indistinguishable balls case. Whereas with distinguishable balls there are V!
possible ways of obtaining this arrangement.
Therefore, classical statistics vastly over-estimates the number of configurations. In classical statistical
mechanics, this is of course taken into account by the 1/ N !terms (Boltzmann factor) in front of the partition
function. This method does not work at low temperature where quantum nature of the particles become
important that impose further restrictions on the occupancy of the energy levels of the system. In a system of
Bose particles, any number of particles can occupy any given energy level. On the other hand, particles obeying
Fermi-Dirac statistics, maxium of one particle can occupy a given energy level. That is, the occupation number
of a given energy level can be 1 or 0.

High Temperature Limit

When the temperature is high, a system has a large number of accessible energy states such as
translational, rotational, electronic.... The number of states is much more than the number of atoms/molecules.
At high temperatures, a large number of states become accessible, especially the translational states. In such a
case, the possibility of multiple occupancy of a state will be greatly reduced. Thus the occupied energy levels
are mostly non-degenerate. Thus, the occupation due to quantum statistics is not important and classical
Boltzmann statistics works well. This is exactly like case Il in justification. So the surplus contributions that
will feature for the indistinguishable particles in the expression

0=9,9,9
N! compared to distinguishable particles.
For an ideal gas the atoms/molecules are independent (negligible intermolecular forces) and
indistinguishable. In the expression
0=4q"
there are N! surplus contributions in the thermodynamic limit for an ideal gas. Thus the exact partition function

for an ideal gas in this limit is
N

_ 9
0 =T ~> W

In the thermodynamic limit,n1’ <<1 (where n is the number density, A is the de-Broglie wavelength,
1

SRS e . - :

A=|———1 and nA’ is a dimensionless quantity) because m >> 1, T>> 1 and n << 1. This is the classical
2mmk, T

regime where Maxwell-Boltzmann statistics holds good and indistinguishability can be exactly accounted for.

But as we go on to low temperatures and high densities multiple occupancy of states increases. nA’ ~1 is in
this limit. Under such conditions, the indistinguishability of particles becomes much more significant. This is
where the quantum effects creep in and there is need for a revised statistics.
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Quantum Statistics (Chapter 6_Pathria)

All known indistinguishable particles, fall in to the class of either Fermions or Bosons. These two
statistics or distributions lay different constraints on the occupancy of a particular state but under the
conservation of two quantities, the total number of particles and the total energy.

Sh=N. T -
i i

These constraints become very significant when there is degenerate/multiple occupancy of
energy levels. &,
To understand the effects of these statistics on the distribution of energy
levels, we first group the energy levels with energy within a small interval together and
assign a degeneracy factor to each group according to the number of energy levels in each
group. Let us denote the energy and degeneracy of i-th group by &i and g, , respectively. The

& &y:7

picture aside illustrates the grouping.

Ideal Fermi-Dirac Gas (Fermions): Fermions obey the condition on the occupation of a state is that: a

state can have 1 particle or 0 particle in it, but never two or more (i.e. #; = 0,1). So, n, is always less than or

equal to g,. This is because they obey the Pauli exclusion principle.

n, =0,1 _><_

Let n, be the number of particles occupying an energy level ¢, in a particular configuration. If g is the

degeneracy of &; , (g; 2 1, ), then the number of possible arrangements amongst the degenerate levels of &, is

|
o _|[8i|___ &’
wiy =| & |- 52
n (g, —n)!
(This is exactly like picking ‘n” white balls out of ‘g’ white balls.)

Partition function: That is, a particular possible state will be either occupied or unoccupied, so that 77, = 0,1,

1 1 - ne,

ZFermions = Z Z et € s = Zl Z e_ﬁ(”151+”252+"')

n=0 n,=0 n =0 n,=0
1 1 )
= Z e e Z e MMt =T {1 +e /% },
ny =0 n,=0 s=0
an=iln{1+e_ﬂg’}
5=0

It follows that, the mean energy and the mean occupation number of a given state are:

8an 1 8an 1
<1/l> z < Y>_ ﬁ 88 +/)’5A,+1

gs

o l+e



Prof. Dr. I. Nasser Phys530, T152 3-Oct-17
QS_examples

Ideal Bose-Einstein Gas (Bosons): Bosons obey this statistics. There is no constraint on the occupation

of a particular state in an energy level as these particles do not obey the Pauli principle. Any number of

particles can occupy a state in an energy level.
n=0,1,2,3,......

n;nax =0

Let n, be the number of particles occupying an energy levelg, in a particular configuration. If g, is the
degeneracy of ¢, , then the number of possible arrangements amongst the degenerate levels of &, are
L (n+g -1 n+g —1)!
Wi = B8y E)
n, n (g, —D!

Justification:
Suppose we take five indistinguishable balls (bosons,n;) and arrange them into three distinct boxes

(degenerate levels, g, = 3) with no restriction on the occupation numbers in each box.

©000 &

Box 1 Box 2 ox 3

Here there are five balls and two sticks (the number of sticks will always be one lesser than the number of
degenerate levels). The total number of possible arrangements for the balls in the boxes is

(m,+g-D!'_(5+3-D! 71 _
nl(g,—1)! 51200 5120

We are justified in doing (g, —1)! because only the boxes are distinct, the sticks are not. The sticks are

indistinguishable.

Partition function: Consider the situation where the mean occupation number of a given state is independent on
the mean occupation numbers of the other states. That is, each occupation number may range from zero to infinity, so
that N;=0,1,2, .....

We have Ex(m, m2, nm2, n3...) = Yiniéi

However, the normalisation, N = )i ni, is no longer required because the number of photons is fluctuating.
The partition function can therefore be rewritten as:

*ﬂznigf *ﬂzni“%‘
2 © =222 ¢
ny Ny Ny, noony ny
Where n,=0,1,2,---00. So,
0 0 -p ngEg ®© ®
D IS i
Bosons
n=0 n,=0 n =0 n,=
o0 o0 0
— Z e‘ﬂ”lgl Z e‘ﬁ"zgz . | | Z m;i
ny=0 n,=0 i=1 n;=0

8
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Now,
N fne 1 . )
e Pt 2 0 el ey o o (sum of a geometric series)
"= I—e ™
So,
= 1
ZBosons — | I —fe;
0 1 —e ﬂ i
and

o0

InZ = —Zln {1 —e }

s=0
It follows that, the average occupation number

<ni>:_l oz, :_li ln( 1_ j:l 0 Zln(l—e_ﬂg’)
B\ oe ). . P0g< 1-e” ) poe %

lﬂeﬁg_l

,8 1-¢” e™i—1

the mean energy of a given state are:

8an i
< >_ zl e*ﬁé ’

the mean occupation number of a single-particle state with energy & is given by
1 éan |
<nY > = +pe
,b’ os, e -1

Example: Compare the Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics when four particles are
arranged in two energy levels. Three particles are at energy level €1 having a degeneracy g1 = 4 and one particle
at energy level &2 having a degeneracy g2 = 2.

Solution:

Note that: n =3, g, =4, n,=1, g,=2

m n; 3 1
Wy = N[5 _ 42 X2 s

a3
(g D) (H4-DIA+2-1)!
vir =] | alg—D! 330 1

m

wp = [ [ B = -
T n (g —n)t 3NN
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Classification

Maxewll-Boltzmann statistics This is the classical statistics and is applicable for a system of independent,
distinguishable (or indistinguishable) and identical particles. No restriction about the symmertry, spins, etc.
Bose-Einstein statistics is applicable for a system of independent, indistinguishable and identical particles of
integral spin (like photons). There is no restriction on the number of particles present in any given quantum
state.

Fermi-Dirac statistics is applicable for a system of independent, indistinguishable and identical particles of
half-integral spin (like electrons). In this statistics, a given energy state can be occupied at best by one particle
only.

B.E. (Bosons) F.D. (Fermions) M.B
Particles Indistinguishable Indistinguishable Distinguishable
Wave- Symmetric Antisymmetric Any
functions
Spin 0, 7,2, Shon, Any
Examples photons, 7-meson, *He | electron, proton, , *He Any
n, 0,1,2,... 0,1 0,1,2,...
: +g, D! g! i
a)(l ) [0) = (nl—l [0) = Ot — gl %
" g, D! ? (g, -, )! O =7, 7 )
Q Q= H Wy Q) = H Wpp Q= H Dyrp
i=1 i=1 j =1
N, 1 1 ape,
E)=—- e —— € '
f( z) i e—a+ﬁgi_1 e—a+ﬂg,+1
Applications | Photons of radiation, Free electrons in metal and semi- Gas molecules (except near 0
gas molecules at very conductor (except at very High K), electrons at Extremely
low temperature.) temperature.) High temperature.

(*) corrected by "correct Boltzmaan counting" i.e. divided by N!. This correction does not correspond to any

physical property of the particles in the system. It is just a rule that defines the mathematical model for

Indistinguishable particles.

** Define the dilute gas, dilute means that for all energy levels, the occupation numbers are very small

compared with the available number of quantum states (i.e. most quantum states are empty). We assume that
N, <<g, forallj .

This condition holds for real gases except at very low temperatures.

For dilute gas one finds

r N;

i=1 N,'

QOpp = Wy = Oy
Simply we can have
| +1 for FD statistics
n,
—L = o] a=<—-1 for BE statistics
g & +va oy
0 for MB statistics

i

10
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Three Distributions

3-Oct-17

The mean occupation number <ns> of a single-particle energy state &  in a system of noninteracting particles: curve 1 is

for fermions, curve 2 for bosons, and curve 3 for the Maxwell-Boltzmann particles.

See Partia Page 150 for the comments

i- In the Fermi—Dirac case (a =1), the mean occupation number never exceeds unity, for the variable n,

itself cannot have a value other than O or 1.

ii- In the Bose—Einstein case (¢ =-1), the occupancy of that particular level becomes infinitely high. As in

the case of Bose—FEinstein condensation.

Example: Consider the case of N =3, n, =2ing, n,=11in ¢,, g,=2 and g, =1. Compare the Maxwell-

Boltzmann, Bose-Einstein, and Fermi-Dirac statistics.

Solution:

.nl- 22 11
WMB:N!H‘(’Z =312 =
i=1

ol
WBE:H

i n (g —1)! 21! 10!
N 2! I!

WFD:H gl = X =
n!l(g,—n)! 20! 10!

i=1

12

i

b

11

(n+g-D!_(@2+2-D! (+1-D!_,

b
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Example: Consider a system of two non-interacting, and identical particles in a volume V. Each particle has
three accessible energy levels €1 = 0, €2 = lg, and €3 = 2¢. The lowest energy level is doubly degenerate.

Phys530, T152

Determine the partition function and the mean energy of the system if:
A. the particles are distinguishable and obey the classical Maxwell-Boltzmann statistics.
B. the particles obey Fermi-Dirac statistics.

C.

the particles obey Bose-Einstein statistics.
D. Determine the high temperature limit of the mean energy of the above three cases. Comparing the results

3-Oct-17

what can you conclude about the behavior of fermions and bosons in this limit?

Solution:

A- Maxwell-Boltzmann Statistics: We have the following distributions:

The total number of macrostates = gN=4’=16.

The partition function is:

12

Energy Macrostates
1 2 3 4
2¢ 0 0 0 0
€ 0 0 0 0
0 [abl O] J[O0]ab|[[af[b]||[b]|al]
Total 0 0 0 0
Energy =
Energy Macrostates
5 6 7 8
2¢ 0 0 0 0
€ b a b a
0 lalo] J[bl]of[[ofa][[o]b]
Total € € € €
Energy =
Energy Macrostates
9 10 11 12 13
2¢ b a b a 0
€ 0 0 0 0 ab
0 [afo] [[blofjfofalj[olb[|[o]0O]
Total 2¢ 2¢ 2¢ 2¢ 2¢
Energy =
Energy Macrostates
14 15 16
2g b a ab
€ a b 0
0 (oJof] JfoJofj[o]o]
Total 3¢ 3¢ 4e
Energy =
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Zys = Zgie_ﬁgi =de 0 +de M 1572 1227 v =4+ 4e7 457 427 e

1

_ 10z 4se”” +10se™” +6se” +4ge””
ME Z op A4+4e 7 57 4 D70 4 o tFE

—>55 (as T — )

B- Fermi-Dirac Statistics: We have the following distributions:

Energy | Macrostates
1 2 3 4 5 6
2¢ 0 0 0 a a a
€ 0 a a 0 0 a
0 [lafal] [JaJoJ[Jolal[fo]alfl[0]a][[0]0O]
Total 0 € € 2¢ 2¢ 3¢
Energy =

The partition function is:
Z., = Zgie_ﬂg" =e P 1207 127 4o =14 277 4207 47
i

10Z 2ce ™ +4ge +3ge% 3
= - 58 (as T — )

e _Eﬁ C 142e 4207 1
C- Bose-Einstein Statistics: We have the following distributions:

Energy Macrostates
1 2 3 4 5
2¢ 0 0 0 0 0
€ 0 0 0 a a
0 [aa| 0] [[Ofaaf|[afaf[lalO][[0]a]
Total 0 0 0 € €
Energy =
Energy Macrostates
6 7 8 9 10
2¢ a 2 0 a aa
€ 0 0 aa a 0
0 laJo] [JoJaflfoJof[[oJo][lo]O]
Total 2¢ 2¢ 2¢ 3¢ 4e
Energy =

The partition function is:
Zyp = Zgl.e*ﬁg" =3¢ /% 4277 137 1o p e =34 27 4307 e 4 o7E
i

PP Zop 3+42e 430y p et

1 0Z 2ce ™ +6ge?” +3ge " +4ge™ 3
= —>55 (as T — )

d- In the high (7 — oo, § -> 0) temperature limit fermions and bosons behave as classical Boltzmann particles.

13
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Example: Consider a system of two particles in a volume V, each of which can be in any one of three quantum
states of respective energy €1 = 0, €2 = lg, and &3 = 3e. The system is in contact with a heat reservoir at
temperature T = (k)" . Write an expression for the partition function if the particles obey:

1- the classical Maxwell-Boltzmann statistics and are consider distinguishable.

2- the classical Maxwell-Boltzmann statistics and are consider undistinguishable.

3- the particles obey Fermi-Dirac statistics.

4- the particles obey Bose-Einstein statistics.
Solution:

Configuration Number of states

0 | 1e| 3¢ [ total ||| MB | BE | FD
XX 0 1 1 --
XX 2¢ 1 1 --
XX | 6¢ 1 1 --
X | X le 2 1 1
X X | 3¢ 2 1 1
X | X | 4¢ 2 1 1

i(energy levels)

_ﬂz
{Z Z ge "
1+

Pe 4 De P8 4+ 273 4 Qe e

Z e Zgl R R e W Rl

Z. Zgl Pei — g7 Pe 4 3P 4 o74FE

14
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The total number of arrangements possible for a particular configuration for both F-D as well as B-E are
(this is over all the energy levels of a particular configuration)

W in§ =T1w" () > 4)
The total number of arrangements possible over all configurations is

Q(N,V,E)=> W({n})—> (5)
{mi}
where Q(N,V, E)is the partition function in microcanonical ensemble.
Thus the entropy is

S =k, InQ =k, InW ({n'}) > (6)

Maximizing the entropy and finding out the maximum term by Lagrange’s method of undetermined
multipliers.

5mw(wgy{azam—ﬂz@MJ:0a (7)
W{ni } = U w (n;)

In[W{n}]= ln[l—_[ w(i)(n[)} =Y Inw®(n,)
S ({n})=X5mw?(n)— (8)
For F-D statistics,
Wi = g;!

Mg, —n,)!
Ing,~Inn'-In(g, —n,)!

=gilngl.—/g{—nilnni—k%—(gi—ni)ln(gi—nl.)+/gl./—%

=g lIng —nlnn —(g —n)n(g, —n,)
_giln[i}ni(u]__g,.lnil_ﬁ]m,.ln[&_l}%(9)
&N n S n

o _ (n+g =D!
Wi VT & T
n(g; =D!
Inw"” =In(n, + g, — 1)~ Inn,'~In(g, —1)!

:(ni+gi_l)ln(ni+gi_1)_%_%+/l/_nilnni+%_(gi_l)ln/g.i_1)+/g{_/1/

= (ni +8; _l)ln(ni +8; _1) - lnni _(gi _l)ln(gi _1)

Z”ilnwﬂéﬂ—1)111%5niln(l+&]+giln[l+ﬂJ_> (10)
n.

1

Inw? =

For B-E statistics,

i i i

General form of Inw® for F-D and B-E statistics is

15
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Inw"” =n, lnE&— aj —&ln(l — aﬂJ —
nl' a gi

where a=-1 forBE

a=1 for FD (12)
a=0 for MB
) [
5lnw(i)=ln(&—aj+n, il &) /& 5n,-=ln[&—aJ—& L ——||sn
n; &_a a 1_aﬂ n; n &_a l_aﬂ
nl. gi ni gi

From eqns (7) and (8),
stnw ({n, })—[az&ai —,b’Zgl.énl} =0 = Shw({n})=Zmw"(n)

Z{ln(%—a}—a—ﬂ&}é‘ni—O =N ln(g—i—aJ—a— s, =0
! i n;

n = —a+§;"
e +a

Thus,

—> (15)

n; is the distribution that maximizes the entropy. Hence

k_iz I ({n}) =Zinw"(n)

Fromeqn (11)

S | g g n . g g g./e’“ﬂ‘gi
— = ‘In| 2L —a |-2LIn|1-a—L | |= ‘In| —=~— |-=In|1-a=24——
k, Z{nl n[n,* aJ a n( ag,-ﬂ Z{nl n(g,-/e“ﬁgfj a n( ¢ 8 H

i:Z[n;‘(a+,Bg[)+&ln(l+ae“ﬁgi )} - (15)
ky, . a
dni=N ; dne=E
S 1 —a-—fe;
—— N—,BE:—Zgiln(1+ae D)
ky a’s

16
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Thus,

i+ﬂ_i:lzgi 1n(1+ae—a—ﬂ€i)
ky, k;,T k,T a*=

From thermodynamics,
i_,.ﬂN_ E G-(E-TS) PV

= — (16)
ky, k,T k,T k,T k,T
Equation of state for a quantum ideal gas is
k. T —a—Be
PV =-£ Zgl.ln(1+ae iy - (17)
a
In the high temperature limit,
a,f=0

Hence Taylor expansion can be done, In(1+ x) = x

PV 1 e, -
=— ae T = e (18
T a Z g Z g (18)
For an ideal gas with Maxwell-Boltzmann distribution, the equation of state is
7 an* =N  (Ideal gas law)
k,T

i

But from eqn (14)

nt = 8

i ea+ﬁ£i
Thus,

PV e,

= e (19

T Zg, (19)

(Compare eqn (18) and (19)). Irrespective of whether it is a Bose gas or a Fermi gas, in the thermodynamic
limit it goes over to Maxwell-Boltzmann distribution.

17
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Bose-Einstein

&

£4 G454
3 % 933Ny
€2 % gz Ng
&1 g G131

The grouping of the single-particle energy levels into “cells.”
Atenergy ¢; there are N, particles divided among gi states. How many ways can they be distributed? Consider

N, particles and g, —Ibarriers between states, a total of N, + g, —1objects to be arranged. How many

arrangements?

Bose-Einstein
(N, +g; -1!
YN g, D!
N; (g, =D
(N, +g; -1!

Inwy, =3 In(N,; +g, =)= In N, 1= In(g, - !
Jj=1 j=1 Jj=1

= Zn:[(Nj +g;=DIn(N; +g,~)—=(N,; +g; _1)]_211:[Nj InN;-N;]

J=1 J=1

~Y'l(g, ~1in(g, ~~(g,~D]

Inwg, =D [(N,+g,-DIn(N,+g,-1)-N,InN,—(g, -1)In(g, - 1]
j=1
Worg oDy N
N

olnw,. =>» ON.|In(N.+g.-1)+
BE ; J J J (Nj+gj—l) J

[ (N +g
Stnw,, =Y 6N, h{ng’ﬂ

j=1 j

J

18
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Constraints (Lagrange Multipliers)

5[lanE—aZNj —ﬂzngj =0
j=1 j=1

n N +g¢o.
Zé'Nj {ln(’ng]—a—ﬁgj =0

J=1 J

ln(l+%]—a—ﬂa‘j =0

J

i a+pfe; j a+pfe N 1
1+&:€ ﬁj i:e ﬂ,_l = ](‘IZ_J: a+fs;
N, N; g; 7 —1
Boltzmann Distribution
N, N, g 1
In L :_O‘_ﬂgi = —‘/=e ﬁj:ﬁ:Tﬁﬁs.
8; ' g; Tooe Y

Fermi-Dirac
Atenergy ¢;there are N, particles divided among g states, but only one per state. g, >N, How many ways

can the N, occupied states be selected from the g, states?
g,
YT N e —N !
N (g, -N))!
n gj '
Wop (N, N,,-+N ) =| | —————
FD( 1 2 ) HNJ'(gJ—NJ)'

J=1

Inw,, = Zlng‘j !—21an !—Zln(gj -N)!
Jj=1 j=1 j=1

= Z[g_,» Ing,—g,=N,InN,+N,-(g;=N;)In(g, =N;)+(g, - N,)]

=l
zzl[gjlngj_lean_(gj_Nj)ln(gj_Nj)]
o
u N, —N. n —N.
St =3 N |~ N, -2 sin(g, N )+ END S s | 1n| £
I LN, S (g mNy A N,

19
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5[lnwFD —aZNj —ﬂzngj =0
Jj=1 Jj=1

J

! —N, | | o N,
Z5Nj In gj / _a_ﬁgj =0 = i—1=€a+ﬁgj &=€aﬁj+1 = fA=—j:—
~ N N N

i J J J

g4
In| =£-1|-a-p&, =0
(Nj ] J

Distributions
+1 for FD statistics
fi=—ts———o, a=<—-1 for BE statistics
' 0 for MB statistics

20
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Quantum Statistics
When taken to classical limit quantum results must agree with classical. B-E and F-D must approach Boltzmann
in classical limit. What is that limit?
Low particle density! Then distinguishability is not a factor.
Classical limit

N, 1 1

=) = P

g, e £l kT

For f, <<1, PRGNS

fj =~ (Hlﬂg_ Same as Boltzmann
e J

Quantum Results
N, 1
i f = —
e“efl +1
—  Bose-Einstein
+  Fermi-Dirac
Chemical Potential

el +1 e T +]
—  Bose-Einstein

+  Fermi-Dirac
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