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FERMI DIRAC GASSES

Fermions: Are particles of half-integer spin that obey Fermi-Dirac statistics. Fermions obey the
Pauli exclusion principle, which prohibits the occupancy of an available quantum state by more
than one particle.

Ideal fermion gas: Consisting of N non-interacting and indistinguishable fermions in a container
of volume V held at absolute temperature T.

Fermi-Dirac distribution: For an ideal FD gas (non-interactions between the indistinguishable
particles) of N molecules in a volume V, the most probable number of particles with &, energy

IS:
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and the continuum is:
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f(e)=ﬁ=ey—+l, y = Ble—p)

Fermi function gives the probability that a single particle state ¢, will be occupied by a fermion.
Clearly, 0< f(g) <1
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The Fermi functionat T =0 f (&) at three different temperatures in FD statistics

Notes:
1- u no need to be negative, due to the +1 in the denominator. x may be positive or negative.

2- If uf<<0,thene”“* >>1 and f () reduces to the Maxwell-Boltzmaan distribution.
3- If ys>>0
i- ife<<py = Ple-p)<<0 = f(g)=1
ii-ife>>u = pe—p)>0 = f(g)=e”“* and fall off exponentially like
Maxwell-Boltzmaan distribution.
ii-if =y = f(2)=)
iv-In the limit of T — 0 we have sharp drop and

Tg(e)de T =0

1 e<ypy,
f(e)= = N =
0 e>u,

Tg(e)f (e)de T #0

Where
27tV 3/2
9(¢)=9:| 5~ (2m )™ Ve, g, =2s+1
2m 3/2
— 4V (F) Je, for electrons
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Exclusion principle implies that a FD gas has a large mean energy even at absolute zero,
0<e<u,(=¢ (0). [Note that: Degenerate here means filled, not as the case of QM]

0 U, >0, e<u,  Verylowtemperature  Completely degenerate
T <<T; 4, >0 Low temperature degenerate
T ~T, u, =0 Intermed iate temperature  Slightly degenerate
T >>T, u<0 High temperature Classical limit

At absolute zero, due to exclusion principle, all the states with O<e <y (=¢ (0))are
completely filled and all the states with & >y, are completely empty.

Completely Degenerate Fermi-Gas
Total number of particles:

o 312 4, 3/2
N = [ g() f (e)de = 4V (i—Tj [Vz de :S”TV[Z—”‘] PR
0

0 h2
N _h_2 3N 2/3
Ho = oml 8zv

For convenience, we introduce a Fermi temperature T, such that x4 =& =kT, . This can be

written as:
ro_t_ 0 (3N
"k, 2mk,\8zV

Example: Metallic potassium has p=0.86x10’kg/m’ and atomic weight of
M =39 kg/kmole. Find g ,T,, and v, .

Solution: We will consider one free electron per atom for monovalent atoms. Thus the
concentration is:

N N,p (6.02x10% atoms/kmole)(0.86 x10°kg/m®)
vV M 39 kg/kmole

=1.33x10% atoms/m?,

2 2/3 h 2 2/3 7 2 2/3
y = h* (3N _ (hc) (3 N) _(124x107 ev.m) §x1.33x1028 atoms )" _ 205 eV
0 8mc? m’

“emlzV zV 8(0.511x10° V) \ 7
Then
T, =t o 2B 53190 K
Ke  8617x10° <

So, even at room temperature we have to treat the metallic potassium quantum mechanically.
Use

2

P

= pZ=2m
om P; Hy

Hy =

2
2 2(2.05eV)x(3.0x10% m/s
o yro e JZHCT ( i _ ) _72210% mise
m  mc (0.511><10 eV)

= v, =8.5x10° m/s
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The speed of the electron in metals is 10 times the speed of sound.

Internal energy:
Ho

U, = jgg (e)f (e)d e

0

2m )" % 3/2 8V (2m\"* 5/2
=47Z'V (Fj !8 dg:T[FJ /JO
3

==N
N 4

Other thermodynamic functions are:
S, =0,
2
Qo =—PV :Uo _So _:uoN :_g:uoN J
Q 2

V 5 Vv

P=—"2-%, (lj =2.71x10’ p atm for electrons)

Thus at T =0 K a fermion gas exerts a pressure. If the electrons in a metal were neutral they
would exert a pressure of about 10° atm. Given this tremendous pressure, we can appreciate the
role of the surface potential barrier in keeping the electrons from evaporating from the metal. In
other words, the Coulomb attraction to the ions counterbalances the pressure. For T =0 K the

value of & (0) is positive and large.

H.W.
Prove that
(T ’
~ 1-— | — | |, T <<T
/u(r ) luo [ 12 [Tf j :l f
Notes:

1- u(T) is positive for temperature below the Fermi temperature and negative for higher

temperature.

2- As the temperature increases above, more and more of the fermions are in the excited

3-Oct-17

states and the mean occupancy of the ground state falls below 1/2. In this region,

1 1
f (0)= <=
© e fryl 2
which implies that
L<0
KgT

or u<0.

For boson gas (T ) is negative at all temperatures and is zero at absolute zero.

AT high temperature the fermion gas approximates the classical ideal gas. In the classical limit:

27mkT VW2V
N

pu=—kgT In(z)=—k,T In{(T
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Example:  for  kilo-mole of the fermion *He gas atoms at STP,

T, =0.069 K, so that _:— =3900, then classically

f

3/2
S A N AU L A IR Py
kT N h N

And e =3.3x10°. The average occupancy of single particle states is very small, as in the case
of an ideal gas obeying the Maxwell-Boltzmann distribution.




Prof. Dr. I. Nasser Phys530, T142 3-Oct-17
Fermi_gases

(Strongly degenerate gas)
x/_ de

Sy =0V (kT

N = jg(g)f(g)dg GVT T

Where we used x, = Su(T) and x= fs.
Our target is the calculation of (T ) as a function of the absolute temperature.

3/2T «/?dx
Oe

+1

Mathematical Note: Somerfield’s integral
The standard integral in the above equation could be solved with the help of Somerfield’s
integral, i.e.

S+1 2
If (X =X, )x°dx = Xo 1+7T—S(S :1)+--- :
s+1 6 X

[o]

1
For the case of the analytic function f (X —X,)= ERET] and s=1/2, we have

+1
0 1/2 2
X 312 T

J o X=X I+
v e +1 3 8X;

Using N :gGSV,u(f’2 , one finds

’US ﬂng(T)I:]‘ E[k_-r] +:|
M

As a first order approximation, we put gz = g, in the square bracket to have

/103/2:,113/2(1-)[ %[k T) +]
Hy

Then, using z, =k T, we get

2 T 2
32 _ , 302 l+ﬂ-—— 4o
Hoo =M (F){ 5 (T,

Now, we can calculate «(T ) as a function of g, as the following:

41

D=4 [ o).
8\ 4,

RS PR (O IR PR . B
H Hy 8 | T, Hy 12T,
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Example: Calculate x(T ) of potassium at T =3.0x10° K. Note that for potassium,
i, =2.05eV at T, =2.3x10" K.
Answer:

2 2 2 32
()= u, [1—’1”—2[%} +---]2.05[1—’1”—2[%j +---]2.05x0.986z2.02 eV
E O X

Which is a slight change with respect to g, =2.05 eV . This is because T is high for potassium
and we can consider u(T )=, .

H.W. Prove
I- the internal energy

2 2 4 4
U z§N/u0 1_|_5L l +7[_ l —..
5 12T ) 16(T.
—

Uo

li- Specific heat
2 2
Qe:(@j ZSLUO lz +...z”_ NKg T
©\ar ), 12 °(TS 2 T,

Total specific heat of metal could be written as:

(CV )total - CV’e + CV (Debye)
= AT +BT?®

free electron Deby's

2
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Fig: 7.5  Comparigon of heat capacity of a gas according to the threo statistic

0 (h* /m kYN /g "‘/'
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Example: Calculate the specific heat of potassium at T =3.0x10° K. Note that for potassium
T, =2.3x10* K.

Answer:
2 2 2
C, =2 N | 7 [ T Ik, = 4035 2020 Ko
’ 2\ T: 2 \T: 2.3x10" K

=6.44x107 Nk,
Which is very small compare to 3 Nk, at room temperature.

To calculate the values of A and B in the equation (C, )__ = AT +BT?, one can treat itasa

linear equation, see the following figure.

total

ii- Entropy

T 2 2 8
5= e g - % i, (LJ_E_[LJ .
)T 2 T.) 10(T,

So,S=0asT =0.

4 2 4 4
FoU-Ts=NkT. |3-Z [T .2 [T .
5 4(T.) 80lT,
iv- Pressure

4 2 4 4
p:_(ﬁJ _2NKeTe |, B2 (T ) 27 (T} | 2U
N )iy 5V 12 \ T 80( T- 3V

iii- Helmholtz




