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FERMI_DIRAC GASSES  
 

Fermions: Are particles of half-integer spin that obey Fermi-Dirac statistics. Fermions obey the 

Pauli exclusion principle, which prohibits the occupancy of an available quantum state by more 

than one particle.  

Ideal fermion gas: Consisting of N non-interacting and indistinguishable fermions in a container 

of volume V held at absolute temperature T. 

Fermi-Dirac distribution: For an ideal FD gas (non-interactions between the indistinguishable 

particles) of N molecules in a volume V, the most probable number of particles with i  energy 

is: 
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Fermi function gives the probability that a single particle state 
i  will be occupied by a fermion. 

Clearly, .1)(0  f  

 

                          The Fermi function at T = 0                              ( )f  at three different temperatures  in FD statistics 

Notes: 

1-    no need to be negative, due to the +1 in the denominator.   may be positive or negative. 

2-  If 0  , then ( ) 1e     , and ( )f   reduces to the Maxwell-Boltzmaan distribution. 
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Exclusion principle implies that a FD gas has a large mean energy even at absolute zero, 

0 ( (0))o f     . [Note that: Degenerate here means filled, not as the case of QM] 

 

0 0, Very low temperature Completely degenerate

0 Low temperature degenerate
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At absolute zero, due to exclusion principle, all the states with 0 ( (0))o f     are 

completely filled and all the states with o   are completely empty. 
 

Completely Degenerate Fermi-Gas 
Total number of particles: 
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For convenience, we introduce a Fermi temperature fT  such that o F B fk T   . This can be 

written as: 
2/3

2 3

2 8

o
f

B B

h N
T

k mk V





 
   

 
 

Example: Metallic potassium has 3 30.86 10 kg/m     and atomic weight of 

39 kg/kmoleM  . Find , ,  and o f fT v .  

Solution: We will consider one free electron per atom for monovalent atoms. Thus the 

concentration is: 

 

 

26 3 3
28 3

22/3 2/3 2/32 7 2
28

2 36

(6.02 10 atoms/kmole)(0.86 10 kg/m )
1.33 10 atoms/m ,

39 kg/kmole

3 3 (12.4 10 eV.m) 3 atoms
1.33 10 2.05 eV

8 8 m8 0.511 10 eV

a

o

NN

V M

hch N N

m V mc V




  



 
   

     
          

     

 

Then 

-5

2.05 eV
23790  K

eV
8.617 10  

K

o
f

B

T
k


  



 

So, even at room temperature we have to treat the metallic potassium quantum mechanically. 

Use 
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The speed of the electron in metals is 10 times the speed of sound. 

Internal energy: 
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Other thermodynamic functions are: 
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Thus at 0 KT   a fermion gas exerts a pressure. If the electrons in a metal were neutral they 

would exert a pressure of about 610  atm. Given this tremendous pressure, we can appreciate the 

role of the surface potential barrier in keeping the electrons from evaporating from the metal. In 

other words, the Coulomb attraction to the ions counterbalances the pressure. For 0 KT   the 

value of (0)f  is positive and large. 
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Notes: 

1- ( )T  is positive for temperature below the Fermi temperature and negative for higher 

temperature. 

2- As the temperature increases above, more and more of the fermions are in the excited 

states and the mean occupancy of the ground state falls below 1/2. In this region, 
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which implies that 
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or 0  . 

For boson gas ( )T  is negative at all temperatures and is zero at absolute zero. 

AT high temperature the fermion gas approximates the classical ideal gas. In the classical limit: 
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Example: for kilo-mole of the fermion 3 He  gas atoms at STP, 

0.069 K,   so that 3900f

f

T
T

T
  , then classically 
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And 53.3 10 .e     The average occupancy of single particle states is very small, as in the case 

of an ideal gas obeying the Maxwell-Boltzmann distribution.
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 Strongly degenerate gas  
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Where we used ( )ox T  and x  . 

Our target is the calculation of ( )T as a function of the absolute temperature.  

 

Mathematical Note: Somerfield’s integral 

The standard integral in the above equation could be solved with the help of Somerfield’s 

integral, i.e.  
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So the total number will be 
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Using 3/ 22
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As a first order approximation, we put o   in the square bracket to have 
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Then, using o B Fk T  , we get 
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Now, we can calculate ( )T  as a function of o as the following: 
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Example: Calculate ( )T of potassium at 23.0 10  KT   . Note that for potassium, 

2.05 eVo   at 42.3 10  KFT   . 

Answer: 
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Which is a slight change with respect to 2.05 eVo  . This is because 
FT  is high for potassium 

and we can consider ( ) oT  . 

 
H.W. Prove  
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ii- Specific heat 
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Total specific heat of metal could be written as: 
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The following figure is a comparison between the specific heat in the three distribution 

 
 



Prof. Dr. I. Nasser                                       Phys530, T142                                             3-Oct-17 
Fermi_gases 

7 
 

 

 

 

 

Example: Calculate the specific heat of potassium at 23.0 10  KT   . Note that for potassium 
42.3 10  KFT   . 

Answer: 
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Which is very small compare to 3 BNk  at room temperature. 

 

 

 

 

To calculate the values of A and B in the equation   3

V total
C AT BT  , one can treat  it as a 

linear equation, see the following figure. 
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            So, 0S   as 0T  . 
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iv- Pressure 
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