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The Canonical Ensemble 
(Parthria Chapter 3) 

In the preceding chapter we established the basis of ensemble theory and made a somewhat detailed study of 
the microcanonical ensemble. In that ensemble the macrostate of the systems was defined through a fixed 
number of particles N, a fixed volume V, and a fixed energy E [or, preferably, a fixed energy range 
 / 2, / 2E E   ]. The basic problem then consisted in determining the number  , ,N V E or 

 , , ;N V E  , of distinct microstates accessible to the system. From the asymptotic expressions of these 

numbers, complete thermodynamics of the system could be derived in a straightforward manner. However, 
for most physical systems, the mathematical problem of determining these numbers is quite formidable. For 
this reason alone, a search for an alternative approach within the framework of the ensemble theory seems 
necessary. 

Practically, too, the concept of a fixed energy (or even an energy range) for a system belonging to the 
real world does not appear satisfactory. For one thing, the total energy E of a system is hardly ever 
measured; for another, it is hardly possible to keep its value under strict physical control. A far better 
alternative appears to be to speak of a fixed temperature T of the system — a parameter that is not only 
directly observable (by placing a “thermometer” in contact with the system) but also controllable (by 
keeping the system in contact with an appropriate “heat reservoir”). For most purposes, the precise nature of 
the reservoir is not very relevant; all one needs is that it should have an infinitely large heat capacity, so that, 
irrespective of energy exchange between the system and the reservoir, an overall constant temperature can 
be maintained. Now, if the reservoir consists of an infinitely large number of mental copies of the given 
system we have once again an ensemble of systems — this time, however, it is an ensemble in which the 
macrostate of the systems is defined through the parameters N,V, and T. Such an ensemble is referred to as a 
canonical ensemble. 
In the canonical ensemble, the energy E of a system is variable; in principle, it can take values anywhere 
between zero and infinity. The question then arises: what is the probability that, at any time t, a system in the 
ensemble is found to be in one of the states characterized by the energy value Er? We denote this probability 
by the symbol Pr. Clearly, there are two ways in which the dependence of Pr on Er can be determined. One 
consists of regarding the system as in equilibrium with a heat reservoir at a common temperature T and 
studying the statistics of the energy exchange between the two. The other consists of regarding the system as 

a member of a canonical ensemble (N,V,T), in which an energy  is being shared by  identical systems 
constituting the ensemble, and studying the statistics of this sharing process. We expect that in the 
thermodynamic limit the final result in either case would be the same. Once Pr is determined, the rest 
follows without difficulty. 
 

3.1 Equilibrium between a system and a heat reservoir 
We consider the given system A, immersed in a very large heat reservoir 'A ; see Figure 3.1. On attaining a 
state of mutual equilibrium, the system and the reservoir would have a common temperature, say T. Their 
energies, however, would be variable and, in principle, could have, at any time t, values lying anywhere 
between 0 and (0)E , where (0)E  denotes the energy of the composite system  (0) 'A A A   If, at any 

particular instant of time, the system A happens to be in a state characterized by the energy value Er , then 
the reservoir would have an energy '

rE such that 

 
Of course, since the reservoir is supposed to be much larger than the given system, any practical value of Er 
would be a very small fraction of (0)E ; therefore, for all practical purposes, 
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where the summation in the denominator goes over all states accessible to the system A. We note that our 
final result (7) bears no relation whatsoever to the physical nature of the reservoir 'A . 
We now examine the same problem from the ensemble point of view. 
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Maxwell-Boltzmann distribution 
A System in the canonical ensemble  

It is our goal to determine the equilibrium configuration (the Maxwell-Boltzmann (MB) distribution) 
for an ensemble of N  identical systems (which may be labelled as 1, 2, … ,N), sharing a total energy E; let 

n (n=1,2,…) denote the energy eigenvalues of the systems. If nN  denotes the number of systems which, at 

any time t, have the energy value n  , then the set of numbers  nN  must satisfy the obvious conditions  

                           constant  0i i
i i

N N N      ,                                 (i) 

                          constant 0i i i i
i i

N E NU N                                       (ii) 

The MB distribution function makes three assumptions:  
 

[1] The particles in the system are distinguishable (identifiable) and non-interacting.  
[2] The number of systems is constant N . 
[3] The total energy is constant E . 

 
Energy levels 

1  2  
n   

# of systems 
1N  2N  

nN  
i

iNN  

energy 
1 1N   2 2N  

n nN  
i

iiNU 

 
 

where  /U E N  denotes the average energy per system in the ensemble. Any set  nN  that satisfies the 

restrictive conditions (i, ii) represents a possible mode of distribution of the total energy E  among the N  
members of the ensemble. Furthermore, any such mode can be realized in a number of ways, for we may 
effect a reshuffle among those members of the ensemble for which the energy values are different and 
thereby obtain a state of the ensemble that is distinct from the original one. Denoting the number of different 
ways of doing so by the symbol  , we have 

     

1

!

!
n r

i
i

N
N

N


 


           ln( ) ln 0i i
i

N N      .                     (iii) 

In view of the fact that all possible states of the ensemble, which are compatible with conditions (i,ii), are 
equally likely to occur, the frequency with which the distribution set fnrg may appear will be directly 
proportional to the number  nN . Accordingly, the “most probable” mode of distribution will be the one 

for which the number   is a maximum. We denote the corresponding distribution set by  *iN ; clearly, the 

set  *iN must also satisfy conditions (i,ii). As will be seen in the sequel, the probability of appearance of 

other modes of distribution, however little they may differ from the most probable mode, is extremely low! 
Therefore, for all practical purposes, the most probable distribution set  *

iN is the only one we have to 

contend with. 
 
Non-Degenerate Case: 

                           constant  0i i
i i

N N N      ,                                 (i) 
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                          constant 0i i i i
i i

N E NU N                                       (ii) 

            

1

!

!
r

i
i

N

N


 


           ln( ) ln 0i i
i

N N      .                     (iii) 

where   and   are the Lagrangian undetermined multipliers and are related to the physical prosperities of 
the assembly. Adding (i), (ii) and (iii) implies: 

*ln 0i i i
i

N dN      . 

It is possible to select values of   and   such that one of the terms in the sum (i.e. i) is zero, the value of 

idN  being immaterial. The remaining idN  terms are then independent of one another (since idN  may be 

obtained from equation (i). It is now possible to set each of the coefficients of idN to zero in the last 

equation and this gives:               
* i
iN e     . 

which gives the distribution for the most probable distribution.  
 Degenerate Case : The only difference will be in equation (iii), which will be replaced by: 

            
1

!
!

iNr
i

i i

g
N

N

              ln( ) ln lni i i i
i i

g N N N       .                   (iv) 

The new distribution will be 
* i
i iN g e    . 

We must now identify the two constants   and    in this distribution equation. In the following we will 
not use the *. 
 

Identification of α :  Now we have i
i i

i i

N N g e N       

sp
i

i
i

N N
e

Zg e


  


, 

Where sp
States All levels

 i i
iZ g e e        is known as the partition function and is of the utmost importance 

in statistical thermodynamics.  

The Maxwell-Boltzmann distribution is therefore (
sp 

i
i

i

g e
N N

Z

 

 ): 

                                            

 sp

    average number of 
particles per quantum state

( )
 

i
i

i
i

N e
f N

g Z

 




    

where )( if   is the probability of occupation of a single state belonging to the ith energy level.  

We can also define  

sp

,  with  
 

i
i

i i

N e
P g N

N Z



    



Prof. Dr. I. Nasser                                       Phys530, T152                                             3-Oct-17 
Canonical_MB_distribution 

5 
 

as the probability that a particle is chosen at random is in the level i (or the probability that a particular 
energy state is occupied), with the normalization condition: 

1i
i

P   

The average value of a physical quantity will be expressed as:  

sp

1 1

 
i

i i i i i i
i i i

R PR N R g e R
N Z

     . 

For example, the average energy as: 

sp

1
,

 
i

i i i i
i i

E
U E P g e

N Z
        

Example: If a particle in a system can be in only two non-degenerate states of energy  1   and 

 2  , then  

1 2
sp

States

(1) (1) 2 cosh( ) i
i e eZ g e e e              , 

     
1 2

1 2
1

tanh( )
2 cosh( )Z

e eE
U e e

N
 

 




 
    

 
      

 and the total energy 
tanh( )E NU N     

which allows us to find   in terms of U . 
 
Example: A system has three energy levels of energy 0, 100 Bk , and 200 200 Bk , with degeneracy of 1, 3, 

and 5 respectively. Calculate the partition function, the relative population of each level, and the average 
energy at a temperature of 100 K.  

  100 /100 200 /1000 1 2
sp 1 5 1 3 5 2.783i B B B BE k k k k

i
i

e e eZ g e e e            

The probability is given by 
i

i
i i

N e
P g

N Z



   

So, the probability of the particles being in the lowest, first and second states are: 

sp

1 2

0 1 2

3 51
0.360, 0.397, 0.243

e e

Z Z Z
P P P

 

       

i  
ig  i  i

ig e    

sp

i

i i

e
P g

Z

 

  
i iP  

0 1 0  1 0.360  0 

1 3  100 Bk  13e   0.397  39.7 Bk  

2  5  200 Bk  25e   0.243  48.6 Bk  

   
sp 2.78Z   Total 1  88.3 BE k  

 

Note that: 0 1 2 1P P P   . 

The average energy is 
 0 1 20 100 200 88.3B BU P P P k k        
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With the Definion  

sp

,  with  
 

i
i

i i

N e
P g N

N Z



    

as the probability that a particle is chosen at random is in the level i (or the probability that a particular 
energy state is occupied), with the normalization condition: 

1i
i

P   

the average value of a physical quantity will be expressed as:  

sp

1 1

 
i

i i i i i i
i i i

R PR N R g e R
N Z

     . 

We can prove the following: 
1- Average energy (the ensemble average of the energy of the system).  

1 1 1 1 ln
e e er r r

r r r r
r r r r

Z Z
E P

Z Z Z Z
    

  
    

      
       

The partial derivative here implies that we must keep the single particle energy levels fixed, eg. we have a fixed volume 
for a mechanical system, or a fixed external field for a magnetic system. 

It is important to recognize that we have found an average value in E – 

averaged over time or over an ensemble. If we are dealing with a system in thermal 
equilibrium with its surroundings, heat can be lost or gained and the exact value of the 
internal energy may in principle differ from the mean value. However when we are 
dealing a system containing a large number of particles, this difference is very small. 
The figure below gives some suggestion of what the distribution of system energies may 
look like, if we measure it at different times or for different members of the ensemble. 
 
The rms variation is very small and in fact for a system of N 
particles we have 

10

1 1

10

E

E N


   

for N = 1020 particles or about 1 mole. In practice therefore we may write U in place of  its mean 
without any significant error. 
 
Another conclusion we may draw from this is that it does not matter whether we consider a 
thermally isolated (macroscopic) system or an isolated (macroscopic) system. The energies we 
calculate will be essentially the same.  

2- Equivalent expressions   ln( ) lnB N B i i
i

S k k P P      

Proof: Start with the definition 

   

1

!
ln( ) ln ln ln ! ln ln

!
N B N B B i B i ir

i i
i

i

N
S k k k N N n k N N n n

N


   
         

   
 


 

The average entropy of one of the elements in the ensemble is / ,NS S N  and 

   

 

1 1 1
ln( ) ln ln ln ln ln

ln

i i
N i i i i i

i i i i

i i
i

n n
N N n n n N n n

N N N N N

P P

                
    

 

   


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3- Entropy 

   

 

sp
sp sp sp

sp sp sp sp
sp sp sp

ln ln ln

ln ln ln

i i i

i

i

B i i B B i
i i i

i B B
B B B B

i i

e e e
S k P P k k Z

Z Z Z

e k k
k Z e k E Z Z k E k Z

Z Z Z

  






  

  




 
         

 

     

  

 
 

4- Helmholtz Free Energy 
The above equation for S can be rewritten as  
 

sp splog ln .B BF E TS k T Z k T Z       

Comments: 
i- It is easy to find spZ  as a function of F  as: sp

FZ e   

ii-  Since lnBF k T Z   we can alternatively derive the internal energy from F. 

 ln
B

F
U E Z F

k T


  
    

         
 

5- Average pressure 

,

1
p p p e r r

r r
r r T N

P
Z V

        
   

With 
1 2

1 2

sp

sp 1 2

, ,, T N T NT N

Z e e

Z
e e

V V V

 

   

 

 

  

                     




 

So that 

1sp

,,

1 i

i T NT N

Z
e

V V
 


          

  

Substituting this result in the expression for mean pressure, we get 

 spsp

sp sp, ,

ln1 1 1 1
p p

T N T N

ZZ

Z V Z V 

  
          

 

6- Identification of β :   
Then the entropy will be: 

spln( ) lnB B BS k k N Z k U     

Then Maxwell’s law gives 

sp

 

ln1

1
   

B B B B
V V V

U

N

B

d ZS
k N k k U k

T U d U U

k T

  






                       

 


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Example: Consider a system of two non-interacting, identical and non-interacting particles in a volume V. 
Each particle has three accessible energy levels ε1 = 0, ε2 = 1ε, and ε3 = 2ε. The lowest energy level is doubly 
degenerate. Determine the partition function and the mean energy of the system if the particles are 
distinguishable and obey the classical Maxwell-Boltzmann statistics. Determine the high temperature limit 
of the mean energy.  
 
Solution:  For Maxwell-Boltzmann Statistics, we have the following distributions: 
 

Energy Macrostates # 
 1 2 3 4 

2ε 0 0 0 0 
 ε 0 0 0 0 
0 ab 0 

 

0 ab a b b a 
Total Energy = 0 0 0 0 

 

Energy Macrostates # 
 5 6 7 8 

2ε 0 0 0 0 
ε b a b a 
0 a 0 

 

b 0 0 a 0 b 
Total Energy = ε ε ε ε 

 
Energy Macrostates # 

 9 10 11 12 13 
2ε b a b a 0 
ε 0 0 0 0 ab 
0 a 0 

 

b 0 0 a 0 b 0 0 
Total Energy = 2ε 2ε 2ε 2ε 2ε 

 
Energy Macrostates # 

 14 15 16 
2ε b a ab 
ε a b 0 
0 0 0 

 

0 0 0 0 
Total Energy = 3ε 3ε 4ε 

 

The total number of macrostates = 
2 2(2 1 1) 4 16Ng      . 

The partition function is: 
31 2 4

2 3 4

4 4 5 2

4 4 5 2

i o
MB i

i

Z g e e e e e e

e e e e

         

       

    

   

     

    


 

2 3 4

2 3 4

1 4 10 6 4

4 4 5 2

3
( )

2

MB

Z e e e e
U

Z e e e e

as T

       

       

   




   

   

   
  

    

 

 

 

H.W. Do the problem for indistinguishable particles. 
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PARTITION FUNCTION AND ITS APPLICATIONS  
 

The single particle partition function expressed as: i

i

z e    involves the sum over the 

distinguishable microstates of the whole system. It may also be expressed as a sum over the energy levels of 
the systems and the degeneracies of the levels, ig , i

i
i

z g e    . When the energy levels are closely 

spaced relative to the thermal energy of the system it is possible to transform the sum into an integral as: 

( )z g e d    , 

where ( )g   is the density of states. 
   A more general form of the partition function may be written as: 

3 3
3

1
( ) N N

N
Z g e d d

h
  p p r ,                       

2

2

p

m
    

where N is the number of particles, p the momentum and r the position. For classical particles (localized 
and distinguishable) the partition function for each of the N particles is identical. Z = zN, is the relationship 
between the single-particle partition function and the partition function for the whole system for localized 
weakly interacting systems. For indistinguishable (non-localized) particles, Z = zN/N!. 
The meaning and the properties of the partition functions are: 
1- Partition function is the sum-over-states. 
2- It is of the utmost importance in statistical thermodynamics. 
3- It depends on the temperature and on the parameters that determine the energy levels and quantum 

states. 
4- It is proportional to the volume of the gas. 
The Maxwell-Boltzmann distribution is therefore: 

( )
i i

i i
i i i

i

Ng e N e
N f N NP

z g z

   


 

     , 

where )( if   is the probability of occupation of a single state belonging to the ith energy level.  

 The average value of a physical quantity will be expressed as:  
1 1

( ) ( ) i
i i i i

i i

f N f g f e
N z

       

 For continuous distribution one can has:  

 











deg

e
N

g

N
f

i

i

)()(

)(
)(  

In Brief:   

 
i

i
i

Ng e
N

z

 

      , i
i

i

Z Uz
z g e

N
 


 

   
  ,  

21 1
[ln( )] [ln( )]i

i i i i B
i i

z
E N g e z k T Z

z z T
 

 
   

      
       

ln ln ,B B B B
V

S
S k W k N z k U k

U
       

.          
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Helmholtz free energy :   























T

F

T
T

T

F
TFTSFUTSUF

V

2  

Use       

2
2

1 1
, B

B

T
k T

kT T k T T T


 

    
      

    
 

Then 

2 2
2

ln( ) 1
[ ]

F z F
U T T

T T kT T 
                    

 

spln FF kT Z z e      

 
Thermodynamic Variables 

The following relations could be easily deduce using the PF:  (use sp
States All levels

 i i
iz Z g e e        ) 

 
Quantity Symbol Formula 

Partition function z  
sp

States All levels

 i i
iz Z g e e                   

Helmholtz free energy F lnBF k T z   

Entropy 
NVT

F
S

,











   
,

ln ln
lnB B

VV N

T z z
S k k T z

T T

                   

Equation of state 
NTV

F
P

,











  
,

ln
B

T N

z
P k T

V

    
 

Chemical potential  
VTN

F

,











  
,

ln
B

V T

z
k T

N
      

 

Internal energy  
TSFU   

2

,,

ln ln

V NV N

z z
U kT

T
           

 

Gibbs’ function 
NTV

F
VFPVFG

,











  
,

ln
ln

lnB
T N

z
G N k T z

U


        
 

Enthalpy H=U+PV 

, ,

ln ln

ln lnB
V N T N

z z
H k T

T V

               
 

Heat capacity 

NVNV
V T

F
T

T

S
TC

,
2

2

,






















2

2

ln ln
2V B

V V

z z
C k T T

T T

             
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IDEAL GAS 
For the ideal gas, the Partition function could be calculated with different methods and give you the same 
answer. For an ideal (Boltzmann) gas consisting of N-distinguishable molecules of mass m, the single 
particle partition function has the following form: 





0

)(   degz , 

where 3/ 2 1/ 2
3

4 2
( )

V
g m

h

  , is the density of states. Using the standard integrals, one can find 

3/ 23 / 2

2 2
0

2 2
( ) Bmk T m

z g e d V V
h h

   



        

   
 . 

This is the partition function for a gas under the assumption that the energy levels are so closely spaced that 
they form a continuum. For N distinguishable particles, we have NzZ  . 
 

Quantity Formula 
Partition function 3 / 2

2

2
N

N N Bmk T
Z z V

h

    
 

 

Helmholtz free 
energy 

2

3 2
ln ln ln

2B

m
F kT Z Nk T V

h




  
      

  
 

Entropy 
0

,

3
ln ln

2B
V N

F
S Nk V T S

T

             
* 

Equation of state 
NRTPV

V

N

V

Z
P

NT













1ln1

,

 

Internal energy 

,

ln 3 3

2 2 B

V N

Z N
U k T

 
 

      
 

Heat capacity 

,

3

2V B
V N

U
C Nk

T

    
 

      
*Comment for the Entropy of the Ideal gas: 
The equation, 

                     
3

ln ln
2B oS Nk V T S

     
,                                              (**) 

is known as the Sackur-Tetrode equation for the entropy of a monatomic gas. Here  

0 2

23
ln 1

2
Bmk

S
h

       
 is a constant independent of T, V, or N. Recalling that s = S/n, Nk/n=R, we have 

                     ov svRTcs  lnln ,                                                  (***) 

which has obtained earlier in thermodynamics. 
Comments on Sackur-Tetrode equation: It is not correct and turns into the following difficulties:  

1- S  is not additive because the volume V (and not V/N) occurs in the argument of the logarithm. This 
prevents us from dividing the system in two parts and writing S=S1+S2.This difficulty is not so easily 
to handle classically. In fact, it leads to the famous Gibbs paradox. 
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2- It is not valid down to absolute zero since S does not approach zero as 0T  . Such contradiction 
would not have occurred if we had used the original summation of Z. The replacement of sum by 
integral in Z is not justified near the absolute zero. At 0T   the lowest state (ε = 0) becomes 
important, while its contribution has been excluded altogether in the integration. In classical 
statistical, since p is a continuous variable and the size of the cell in the phase space is not fixed, we 
cannot estimate the third law. For this we have to go to quantum mechanics. 

 
 
 
Equipartition theorem: For every degree of freedom for which the energy is a quadratic function 

 2( )z az  , the mean energy per particle of a system in equilibrium at temperature T is kT/2. 

H.W.    Prove that                        kT
dzzN

dzeaz

dzzN

dzzNz
z

kTaz

2

1

)()(

)()(
)(

/2 2







 
  

 
Standard integrals  

2 22 1
1

! 1 3
, , 0,1,2,.. ( ) , ( )

2 2 2 2
ax n ax

n

n
e dx x e dx n

a a

 
 

  


 

        ,  
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Apendices 
Partition function for Non-interacting system 

Ideal Gas 
 
Derivation 1: 
We will now discuss about the derivation of the translational partition function of the ideal monatomic gas. The translational 
energy states of an ideal monatomic gas can be obtained from the solution of a particle of mass m in a 3-dimensional box of side 
a. 

 
2

2 2 2
28x y zn n n x y z

h
n n n

ma
     

where nx,ny,nz are integer and can have values in the range 1 to ∞. 
 

Now, one particle partition function ( transz ) can be written as 

2 22 2 2 2

2 2 2

2 2

2

8 8 8

, , 1 1 1 1

3

8

1

e

yx z

n n nx y z

x y z x y z

h nh n h n

ma ma ma
trans

n n n n n n

h n

ma

n

z e e e e
 





     

   

 



 

 
  
  

   


 

This summation cannot be evaluated analytically. However, we can replace the summation by an integral because of the following 
reason 
 
The energy difference between the state nx and nx+1 is 
 

   22 22 2

2 2 2

1 2 1

8 8 8
x xx

h n h nh n

ma ma ma

  
     

 
At room temperature, for m = 10-22 g and a = 10 cm, the difference is  

  202 1 10xn      

A typical value of nx at room temperature is of the order of 1010, so Δ is very small for all but very large values of nx. Again at the 

limit of very large value of nx, 

2 2

28
xh n

mae



 will be negligible. Hence, the above summation can be replaced by an integral 

2 2

2

3
3 / 2

8
2

0

2
h n

Bma
trans

mk T
z e dn V

h

             
  

 

 This is the desired expression for transz  where V is written for a3. 

 
Derivation 2: 

We now derive the translational partition function of an ideal monatomic gas in another way. In the previous derivation, 

we have written transz  as a sum over energy states. We now write the same as a sum over energy levels. Like energy states, 

energy levels are also very densely distributed (we will discuss it later) and hence the transz  can be written as an integral. 

                                                     
0

transz g e d 


   
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The function  g  represents the density of states, and  g d   is the number of energy states between   and d  , on, 

in other words effective degeneracy.   
 

Let us now try to get an expression of  g  . Consider a three dimensional space spanned by nx, ny, and nz. One can 

easily understand that there is a one-to-one correspondence between energy (expression given in the previous section) and the 
points in the (nx, ny, nz) space with coordinates given by the positive integers. Below is a two-dimensional version of such space 
(Figure 1). 

 
Figure 1: Two-dimensional version of the (nx,ny,nz) space, the space with the quantum number nx ,ny, and  nz as axes 

 
In this space, equation of a sphere of radius R  will be 

2
2 2 2 2

2

8
n y z

ma
n n n R

h


     

Now the number of microstates energy (   ) having energy     will be the volume of the one octant (1/8) of a sphere of the 

corresponding radius R in (nx, ny, nz) space. 

 
3 / 23 2

2

1 4 8

8 3 6

R ma

h

  
   

     
   

 

The factor 1/8 comes because the integer nx, ny, nz can have only positive values and hence only the volume of the one octant has 
to be considered. 
Now, the number of states between energy    and d   will be 

    3 / 22
1/ 2

2

4 8d ma
g

d h


    

 
  

     
 

 

[If we take  = 3kBT/2, T = 300K, m = 10-22 g, a = 10 cm, and Δ to be 0.01 , then number of states within this interval   

will 2810 .] 

Now put the expression of 

3 / 2

2

2
( ) 4

m
g V

h
     

 
 in integral of transz  

   

3 / 2

2
0 0

3 / 2 3 / 2
3 / 2 3 / 2

2 2 2
0

(3 / 2)
2

3 / 23 / 2

2 2

2
( ) 4

2
     4

2 2

2 2
     

Bk T
trans

y
B B

B

m
z g e d V e d

h

m V m
V k T ye dy k T

h

mk T m
V V

h h


 



    




 


  





 

    
 

       
   

         

 

 


 

 
The expression the same as we got in the previous derivation. 
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The factor 
1/ 2

2

2 B

h
mk T

  
 

 that occurs in the translational partition function has units of length and usually denoted by 

 (thermal de-broglie wavelength). In this notation qtrans becomes 

3trans

V
z 


 

Partition function of a system of ideal gas of particle N 

We have already evaluated the single particle translational partition function ( transz ) of ideal gas. Let us now consider a system of 

N ideal gas molecules confined in volume V and are at temperature T. As the particles are indistinguishable from each other, the 
N particle partition function will be 

                                            
3 / 2

2

1 2
,

! !

N
Ntrans B

N

z mk T
Z V T V

N N h

     
 

Useful Relations 
We will now use this expression of the partition function and derive some useful relation which we have already used for ideal gas 
at different context. 
Ideal gas equation 
From the properties of canonical ensemble, we know that free energy ( F ) is 

                                   
3 / 2

2

2
ln , ln B

B N B

mk T Ve
F k T Z V T Nk T

h N

        
   

 

where we have used the relation ! N NN N e  
Now, from the thermodynamic relation pressure can be obtained as, 

                                    
B

T

F Nk T
P

V V

     
 

This is the ideal gas equation which we use 
Energy and heat capacity 
We can write the energy E of the system of canonical ensemble as, 

  3 / 2
2 2

,

ln , ln 3

2
N

B B B

N V

Z V T d T
E k T Nk T Nk T

T dT

 
    

 

 Now the heat capacity ( VC ) of the system can be obtain using thermodynamic relation as 

3

2V B
V

E
C Nk

V

    
 

The results of energy and heat capacity are also known to us. 
Entropy 
We will now derive the entropy of the system of N ideal gas particle. This we may not have seen earlier. We will use the 
thermodynamic relation to get the expression for entropy (S) 

                         

3 / 2 5 / 2

2

2
ln B

B
V

F mk T Ve
S Nk

T h N

                
  

This equation is called Sackur-Tetrode equation. 
  

***************** 
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A: Evaluation of Partition Function for Particles in an Isolated Box 
 
Classical Particles in a Large Box: To specify the states of this system, we 
could divide the parameter space into 6 dimensional phase space (r, p) of 
arbitrarily small elementary volumes (Δr, Δp ) . Calculations are then carried 
out by integrating over properties defined with respect to these volumes. In the 
limit of small volumes, the size cancels out and is therefore not important. This 
approach has been adopted historically but the math’s is obscure and has been 
supplanted by quantum models. 
 
Quantum Particles in a Large Box 

Consider a rectangular box (an infinite potential well in 3 dimensions) 
into which we will put otherwise free particles. We don’t want the edges of the 
box to affect these particles in any way so we choose de-Broglie 
wavefunctions that have the periodicity of the edge lengths… 

nxyz λ = L,   nxyz = 0,  1,  2,  3 … 
The particles’ momentum in the three Cartesian directions is given by 

pxyz =  h / λ =  nxyz h / L 

From this we get the kinetic energy  222
2

2

2 zyxtotal nnn
mL

h
E     

 
In general each energy level of the particle will correspond to several different momentum vectors. Taking 
the energy of the particles to be governed by quantum constraints we have: 

 222
2

2

2 zyxj nnn
mL

h
  

where L is the size of the box. We now evaluate the partition function sum. 

2 2 2
2 2 2

2 2 22 2 2

e  where  ranges from to 

e e e

j

x y y

x y y

j

h h h
n n n

mL mL mL

n n n

Z j  

  



  

  





  
 

Most of the values of nx, ny, nz are large so we replace these sums by integrals and get 
 

2 2 2
2 2 2

2 2 22 2 2e d e d e d
x y z

h h h
n n n

mL mL mL
x y zZ n n n

      

  

     

Now 
2

e dax x
a

   

So 
3

2

2 2 2 2 2 2 2

2  

2 2 2

m
Z V

h mL h mL h mL h

   
   

 
     

 
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B- The partition function for distinguishable and indistinguishable particles 
 

a- The N-particle partition function for distinguishable particles  
 

Let's start with one spin particle in external magnetic field, we will have two states  with energy B and 

 with energy B , then  

1
B BZ e e      

 
For two spins, there are four states of the whole system, with energy 2 B ,  and  , both with 

energy zero, and with energy 2 B . Thus the two-particle partition function is  

 

 
 

In general, for N particles, the energies range through    , 2 , , 2 , ,N B N B N n B N B          

with there being !/ !( )N n N n     separate states with n down-spins. So  

 
 

There is a caution, which can be ignored on first reading. The argument says that there are a number of 
different states with the same number of down spins. Since the spins are arranged on a lattice, this is correct; 
every spin can be distinguished from every other spin by its position. When we go on to consider a gas, 
however, this is no longer so, and the relation between 1Z and NZ changes. 

b- The N particle’s partition function for indistinguishable particles.  
As we know for the N -distinguish particles (as held for the paramagnet by their position in the lattice) we 

have  1

N

NZ Z . Consider again the simplest case, of two particles and two energy levels. If the particles 

are distinguishable, as in the upper picture below, there are four states, two of which have energy , and the 
two-particle partition function is  
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If the particles are indistinguishable, however, there are only three states, as in the lower picture, and the 
partition function is  

 
If we use  2

1Z , we over-count the state in which the particles are in different energy levels. In general there is no simple 

expression for the -particle partition function for indistinguishable particles.  

However we note that  1

N
Z over-counts the states in which all particles are in different energy 

levels by exactly . So if we are in a position where there are many more accessible energy levels (that is, 
levels with energy less than a few Bk T ) than there are particles, the probability of any two particles being in 

the same energy level is small, and almost all states will have all the particles in different levels. Hence a 
good approximation is  

 

In the ideal gas, we can calculate the number of levels below, say, 2 Bk T , from with 

, giving 2.1 Qn V . So we see that Qn is a measure of the number of states available, and 

we can use the approximation  1 / !
N

NZ Z N  provided Qn V N  (or Qn n ). This is the classical limit.  

It is worth noting that, assuming a truly ideal gas which never condenses or solidifies, the Sackur-Tetrode 
equation is not valid for indefinitely low temperatures. It must be wrong, because as 0T  , 0Qn   and 

S  . But we know that 0S  as 0T  , because all the particles occupy the lowest energy level. But 

of course that is exactly the regime in which  1 / !
N

NZ Z N is no longer valid.  

 
 
C: APPLICABILITY OF MB DISTRIBUTION  

Maxwell-Boltzmann statistics (classical regime) is valid under the dilute gas assumption ( ) 1i
i

i

N
f

g
   . 

Use the definition ( )
i

i
i

i

N e
f N

g Z

 




  , and for the ideal gas 
3/ 2

2

2
Q

mkT
z V Vn

h

   
 

 where nQ is the 

quantum concentration of the gas and has a dimension of m-3.  
1

( )
i

ii
i

i Q

N e N
f N e

g Z V n

 
 


     

 
 

 
For a gas with the density of air at STP, 25 -33 10  mn   . We have Qn n  for  K, so real gases are 

essentially always classical.  
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Note too that 31/Qn  , where  is the wavelength of a particle with energy
3

2 Bk T . This implies that the 

classical limit holds if the particle separation is large compared with their wavelength--a reasonable-
sounding statement!.  
 
An example of classical gas is the Helium (m = 6.65x10-27 kg) under standard (STP) conditions, then 

30 -37 10  mQn   , 
26

25 -36.02 10
3 10  m

22.4

N
n

V


    ,  e 

 in the order of unity and 

25
6

30

3 10
( ) 4 10 .

7 10
i

i
i

N
f

g
 

   


 

 
An example of a non-classical gas is the conduction electrons in a metal; they are free to move within the 

metal and can be treated as a dense gas  29 -310  mn  , but at room temperature  27 -310  mQn  . So the 

quantum nature of the electron (specifically the fact that it is a fermion) becomes all important.  
 

 
D: Gibbs’ Paradox 
 
Gibbs paradox appears when we mix two similar ideal gases. 

 
(A) Mixing of two different ideal gases at constant temperature: The mixing of two different gases is an 
irreversible process. If we consider mixing of two different gases (N1,V1,T) and (N2,V2,T) with  V= V1+ V2 
and N= N1+ N2 then the change in entropy of (**)   is 

0lnln)(
2

2
1

121 


















V

V
kN

V

V
kNSSSS , 

This gives the entropy of mixing for two different ideal gases and is in agreement with experiments. For N1= 
N2=N, V1= V2=V/2 , we get 2ln2NkS  . 
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(B) Mixing of the same two ideal gases at constant temperature: If the two gases are the same, the process is 
reversal one. The final entropy ought to be the same with, or without mixing, then the change in entropy is 

0)( 21  SSSS . 
This result is in agreement with the thermodynamics of revisable processes and also with experiments, but 
contradict Eq. (**). The derivation of Eq. (**) does not depend on the identity of the molecules and would 
give the same increase in entropy as two different gases. 
Comments:  

1. In the case (A), mixing leads to diffusion of the molecules through the whole volume V (twice the 
initial volumes). There is a random mixing of the different molecules and so an increase in the 
disorder. This irreversible process and the increase of entropy make sense. The mixing is a process in 
which the positions of molecules one gas are interchanged with those of the other gas. Each such 
exchange creates new states, i.e. increasing the number of microstates or equivalently the entropy 
increases. 

2. In case (B), any such interchange is always an interchange between two identical molecules. 
Therefore, no new state is created. In this case, the application of Eq. (**) overestimates the number 
of accessible states because classically we have taken all the molecules, even of the same gas, as 
distinguishable. To solve this paradox, we have to change Z by zN/N! The final results read 

ln ln ( ln ),

3
ln ln *

2B o

Z N z N N N

V
S Nk T

N


  

     

,                                           (+) 

where    
2

23 5
* 1 ln

2 2
B

o o

mk
S

h

      
 

  .    

Eq. (+) has the properties of the entropy, and gives the correct answer for both cases, but it is not accurate at 
very low temperature.     
Example: Using the corrected entropy formula (Sackur-Tetrode equation) 

2

3 2 5
ln ln

2 2
BV mk

S kN kN
N h

              
, 

work out the entropy of mixing for the case of different gases and for identical gases, thus showing 
explicitly that there is no Gibbs paradox. 
Answer:  
(A) Mixing of two different ideal gases at the same temperature, the entropies of the gases before mixing 
are: 

2

23 5
ln ln , 1,2

2 2
i i B

i i i
i

V m k T
S kN kN i

N h

         
, 

Mixing of the gases in the volume V=V1+V2 implies the total entropy after mixing is 
2

2
1

23 5
{ ln ln }

2 2
i B

total B i B i
i i

m k TV
S k N k N

N h




        
  

The entropy of mixing for the case of two different gases is: 

1 2 1 2
1 2

( ) ln lntotal B B

V V
S S S S k N k N

V V
       

i.e. ΔS > 0 for the mixing of two different gases. 

(B) Mixing of two identical gases: m1 = m2 = m. Assume the densities are the same, i.e. 
2

2

1

1

V

N

V

N

V

N
 , 

then (because they are identical, so will treat them as one with total volume V and total number N) 
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2

23 5
ln ln

2 2
B

total B B

mk TV
S k N k N

N h

        
 

The entropy of mixing is 

1 2
1 2 1 2

1 2

1 2

( ) ln( ) ln( ) ln( )

( ) ln 0

total B B B

V VV
S S S S Nk N k N k

N N N

V
k N N N

N

      

   
 

ΔS = 0 for the mixing of two identical gases with the same particle density, i.e. no Gibbs paradox. 
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(15)                                i
i in g e   

Calculating e
, from (15) 

i i
i i i

i i i

N n g e e g e         

sp
sp

,                        i

i i
ii

i

N N
e Z g e

g e Z





    

sp

;                                        (16)
i

i

e
n N

Z

 

  

sp

                                        (17)
i

i i

e
n Ng

Z

 

  

Important differentiations 

 
1- 

sp i i
i i i

i i

Z
g e g e 

 
  

  
             

sp                                   (18)i
i i

i

Z
g e 




  
   

2- 

sp

,,,

i i i
i i

i i T NT NT N

Z
g e g e

V V V
                      

   

sp

,,

                    (19)i i
i

i T NT N

Z
g e

V V
              

  

Average energy 

sp

sp sp sp

1 1 1 1
i i

i i i i i
i i i

Z
E n g e g e

N Z Z Z
  

 
  

     
     

sp[ln( )]                                                 (20)E Z



  


 

Internal energy 

sp[ln( )]                                   (21)N N E NU E Z





   
  

Average pressure 

sp sp

,sp sp, ,

ln( )1 1 1
i i

i
i T NS N T N

Z ZE
P g e

V Z V Z V V
  

 
                            

  

  sp

,

ln( )1
                                                  (22)

T N

Z
P

V
 

    
 

Entropy 
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From (16)                                            spln( ) ln lni in N Z             

  
!

ln( ) ln( ) ln lnB B B i i
ii

i

N
S k k k N N n n

n

      
 

 


 sp

sp

ln ln

ln ln ln ln ln
i

B i i B i i i i
i i i iN Z

N N U

S k N N n n k N N N n Z n n
 

 
 

                 

   


 

spln                             (23)B BS k N Z k U    

Diff (23) 

sp

 

ln
                                      (b)B B B B

V V V

U

N

d ZS
k N k k U k

U d U U

  




                      
 

Using: 

 
1

                                           (a)
V

S

T U

    
 

 (a)=(b) 
1

Bk T
   

Helmholtz free energy  

sp sp

1/

( ln ) lnB B B BF U TS U T k N Z k U U Nk T Z k T U


         

spln                               (24)BF Nk T Z    

 
Entropy of an Isolated System from Z 
 
We calculate here the entropy of an isolated system, starting from ln( )BS k  . If we write the 
statistical weight in terms of unique energy states rather than degenerate energy levels, becomes 

,

1
ln ln ! ln

! i i i
i istates i i

N N N N
N

           

Now  
1

e
i

Bk T

iN N
Z



  

And  
1

ln ln i
i

B

N
N

Z k T

 
  

 
 

So 

1 1

1

 ln ln ln 1i B
B i B B i B i i B

i i iB B

N Z k Z U
S k N k N k N Nk N Nk

Z k T N k T N T

 
                      

    

Now 1 
!

N

N

Z
Z

N
     1

1 1ln ln ln ! ln ln ln 1N

Z
Z N Z N N Z N N N N

N
         
 

 

Hence  
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lnB N

U
S k Z

T
   

 
Another 

Example: Calculate the most probable distribution for the probability, ,
N

N
P i

i  N .  Calculate S and F. 

Answer:  Use the conditions: 

1 0, and

0,

i i
i i

i i i i
i i

P P

P U P

 

   

  

  

 

 
 

lni i
i

S P P   

At equilibrium (1 ln ) 0i i
i

S P P    , which gives
Z

eeP i
i

1
,)(   

 

Substitute in S, we have  

                                  ln ln ln .S k U k Z F U TS kT Z NkT z          

 

Prove that:  
1

ln ln
W

B j j B
j

S k p p k


     

where the probabilities pj = 1/  in the microcanonical ensemble, therefore: 

  
1

1 1

1 1
ln ln ln ln ln lnj jp p

B j j B j B j B B B
j j

S k p p k p k p k k k


   

 

 
            
  
 

   

where i ip   is the probability of the i’th microstate, given by 

iE

i

e

Z






  

Z is the canonical partition function given by iE

i

Z e   , and iE  is the energy of the system in ith microstate. 

 

Q: use 
iE

i

e

Z






  in  ( ) logi i
i

S E k     to have log .S k E k Z   Compare the final expression with the 

thermodynamics expression F E TS   to calculate the Helmholtz Free Energy in the form log .F NkT Z   

Answer: 

 
where E  is the ensemble average of the energy of the system. The above equation can be rewritten as  
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log log .F E TS kT Z NkT Z       

ln ln lnN B N B r r
r

S k k N N N N
      

  

With r rN p N , we have 

  1ln ln ln ln , N B r r B r r B r r
r r r

S k N N Np p N Nk p p S k p p
          

    

 

 ln ln ln ,B r r B r r B r B
r r r

U
S k p Z k p k Z p k Z

T
            

Or 
 

Helmholtz Free Energy 
            – kB T ln Z = U – TS      
If we define a new function , F, by the expression 

log .F NkT Z         
 

then we have also  
.F U TS   

Thermodynamic Properties Derived from F 
 
Eq(6.12) gives the 1st Law in entropy form for reversible processes 
 

d d d

Now                                 

and                                d d d d

d d

d d

so                                          

V T

V

U T S p V

F U TS

F U T S S T

S T p V

F F
T V

T V

F
S

T

 
 
  

   


               

    
                              (8.4)

and                                                                     (8.5)

from 1.TD we also have                                    

T

V

F
p

V

U
T

S

    
    

  (8.6)  

For a paramagnetic system, the analogous constraint to a constant volume (rigid system boundary) is a 
constant external magnetic field. If this field changes then work is done on reorienting the magnetic dipoles, 
changing the state of internal magnetisation. So for a magnetic system we write 

0d d d                     (8.7)F S T M H    
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This leads to the quantities derived for the magnetic system... 
 

0

                                                               (8.8)

1
and                                                             (8.9)

and                           

V

T

F
S

T

F
M

H

    
     

                                        (8.10)
H

U
T

S

    

 

 
Pressure of Ideal Gas 
 
By way of illustration we shall use eq(8.5) to derive the pressure of an ideal gas. 
 
For a gas of N molecules we have F =  – kB T ln ZN where, for indistinguishable particles, we have from, 
 
 
 
and we have already calculated Z1 as ... 

 

3
2

1 2

1

3
2

2

,

2  

So                                ln ln !

2  
ln ln ln !

1
using eq(8.5)                

or                              
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B
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m
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h
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m
k T N V N N

h

F
p Nk T

V V

pV Nk









 
  

 

  

          
     

 ,                                        (8.11)T

 

 
a very familiar result. 
 
Entropy  
 
We shall now show that eq(8.5) gives the same result as the derivations of entropy in sections 7.2 or 7.3. For 
the entropy of N particles, we have 

!
1

N

Z
Z

N

N 
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ln ln

1 d d
and              

d d

1
so                              ln ln

ln ,      using eq(7.1) for internal energy

B N B N

B

B N N

B N

S k Z k T Z
T

k T T

S k Z Z
T

U
k Z

T






 



 


 



 

 

 
 

 


