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Quantum Statistics and  Bose-Einstein  Condensation 
  
Let us consider a system consisting of non-interacting molecules,  denoted by a, b, c …., whose energy levels 
are given by Ea, Eb, Ec, …In the classical statistical mechanical treatment of ideal gases, the 
particles/molecules/atoms are assumed to be distinguishable. Therefore, every possible occupation of energy 
levels by particles is admissible. Hence the following decomposition of the Hamiltonian, total energy and the 
partition function holds good. 
                                     ..... cba HHHH  

                                    .... cba EEEE  

                                    
E

a
a

q e   a   ,               E
b

b

q e   b  

                           .....cba qqqQ          where a, b, c etc are the particle indices.   

 
Owing to the distinguishability of the particles ‘a’ and ‘b’, arrangements I and II are different and each should 
be counted separately.  
          However, when particles are indistinguishable, the arrangements I and II are one and the same and hence 
should be counted only as one arrangement. Evaluating the total partition function as 
                                                   .....cba qqqQ                                                          

 is incorrect as it has those extra terms.  
…………………………………………………………………………………………….... 
Justification: 
I.  Take five balls that are distinguishable. 
 
       
 
 
The total number of ways in which the balls can be arranged in three levels such that 

2 balls in level 1 
2 balls in level 2 

                                                                            1 ball in level 3 

are   30
!1!2!2

!5
  

Generically, 
!..!!

!

321 nnn

N
where ...,, 321 nnn  are the numbers of balls occupying levels 1, 2, 3.. etc respectively. 

 1  2  3  4  5 
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II. Supposing the balls were indistinguishable, 
 

 
 
 
Then the number of ways is which the above arrangement can be done is just 1 ! 
         Supposing an arrangement with only one ball occupying each level is desired, then again there only one 
possible way to obtain it in the indistinguishable balls case. Whereas with distinguishable balls there are N! 
possible ways of obtaining this arrangement. 
Therefore, classical statistics vastly over-estimates the number of configurations. In classical statistical 
mechanics, this is of course taken into account by the 1/N! terms (Boltzmann factor) in front of the partition 
function. This method does not work at low temperature where quantum nature of the particles become 
important that impose further restrictions on the occupancy of the energy levels of the system. In a system of 
Bose particles, any number of particles can occupy any given energy level. On the other hand, particles obeying 
Fermi-Dirac statistics,  maxium of one particle can occupy a given energy level. That is, the occupation number 
of a given energy level can be 1 or 0. 
……………………………………………………………………………………………… 
High Temperature Limit 
         When the temperature is high, a system has a large number of accessible energy states such as 
translational, rotational, electronic…. The number of states is much more than the number of atoms/molecules. 
At high temperatures, a large number of states become accessible, especially the translational states. In such a 
case, the possibility of multiple occupancy of a state will be greatly reduced. Thus the occupied energy levels 
are mostly  non-degenerate. Thus, the occupation due to quantum statistics is not important and classical 
Boltzmann statistics works well.  This is exactly like case II in justification. So the surplus contributions that 
will feature for the indistinguishable particles in the expression  
                                                 .....cba qqqQ   

N! compared to distinguishable particles.  
         For an ideal gas the atoms/molecules are independent (negligible intermolecular forces) and 
indistinguishable. In the expression 
                                                   NqQ   
there are N! surplus contributions in the thermodynamic limit for an ideal gas. Thus the exact partition function 
for an ideal gas in this limit is 

                                                  )1(
!


N

q
Q

N

 

         In the thermodynamic limit, 13 n  (where n is the number density,   is the de-Broglie wavelength, 

2

1
2

2 









Tmk

h

B
  and 3n  is a dimensionless quantity) because m >> 1, T >> 1 and n << 1. This is the classical 

regime where Maxwell-Boltzmann statistics holds good and indistinguishability can be exactly accounted for. 
But as we go on to low temperatures and high densities multiple occupancy of states increases. 13 n  is in 
this limit. Under such conditions, the indistinguishability of particles becomes much more significant. This is 
where the quantum effects creep in and there is need for a revised statistics. 
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Quantum Statistics       
         All known indistinguishable particles, fall in to the class of either Fermions or Bosons. These two 
statistics or distributions lay different constraints on the occupancy of a particular state but under the 
conservation of two quantities, the total number of particles and the total energy. 
                                               Nn

i
i    

                                               En i
i

i    

 
These constraints become very significant when there is degenerate/multiple occupancy of 
energy levels. 
 To understand the effects of these statistics on the distribution of energy 
levels, we first group the energy levels with energy within a small interval together and 
assign a degeneracy factor to each group according to the number of energy levels in each 
group. Let us denote the energy and degeneracy of i-th group by εi  and gi , respectively. 
The picture below illustrates the grouping. 
                                
                                                           
         Fermions obey the condition on the occupation of a state is that: a state can have 1 particle or 0 particle in 
it, but never two or more. So, ni is always less than or equal to gi. This is because they obey the Pauli exclusion 
principle.  
 
                                                        1,0in         

 Let in  be the number of particles occupying an energy level i  in a particular configuration. 

If  ig  is the degeneracy of i  , (such that the degeneracy of that energy is   the number of particles occupying 

that energy level), then the number of possible arrangements amongst the degenerate levels of i  is  

                                             )2(
)!(!

!)( 



iii

ii
D ngn

g
wF  

(This is exactly like picking ‘n’ white balls out of ‘g’ white balls.) 
 
Bose-Einstein Statistics 
         Bosons obey this statistics. There is no constraint on the occupation of a particular state in an energy level 
as these particles do not obey the Pauli principle.  Any number of particles can occupy a state in an energy 
level. 
                                              in 0, 1, 2, 3,…… 

                                                max
in  

Let in  be the number of particles occupying an energy level i  in a particular configuration. If  ig  is the 

degeneracy of i , then the number of possible arrangements amongst the degenerate levels of i  are 

 

                                          )3(
)!1(!

)!1()( 




ii

iii
E gn

gn
wB  

…………………………………………………………………………………………….... 
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Justification: 
         Suppose we take five indistinguishable balls (bosons, in ) and arrange them into three distinct boxes 

(degenerate levels, 3ig  ) with no restriction on the occupation numbers in each box. 

 
 
  
               Box 1                      Box 2                Box 3 
Here there are five balls and two sticks (the number of sticks will always be one lesser than the number of 
degenerate levels). The total number of possible arrangements for the balls in the boxes is 

                                                 
( 1)! (5 3 1)! 7!

21
!( 1)! 5!2! 5!2!

i i

i i

n g

n g

   
  


 

We are justified in doing )!1( ig  because only the boxes are distinct, the sticks are not. The sticks are 

indistinguishable.  
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Example 1: Compare the Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics when four particles 
are arranged in two energy levels. Three particles are at energy level ε1 having a degeneracy g1 = 4 and one 
particle at energy level ε2 having a degeneracy g2 = 2.  
Solution:  
Note that:   n1 = 3,  g1 = 4 ,  n2 = 1, g2 = 2 

 

3 1

1

1

1

4 2
! 4! 512

3!1!

( 1)! (3 4 1)! (1 2 1)!
40

!( 1)! 3!3! 1!1!

! 4! 2!
4

!( )! 3!1!1!1!

iNn
i

MB
i i

n
i i

BE
i i i

n
i

FD
i i i i

g
w N

N

N g
w

N g

g
w

N g N








  

     
  



  








 

 
Example 2: Consider a system of two particles in a volume V, each of which can be in any one of  three 
quantum states of respective energy ε1 = 0, ε2 = 1ε, and ε3 = 3ε. The system is in contact with a heat reservoir at 
temperature 1( )T k  . Write an expression for the partition function if the particles obey: 

1- the classical Maxwell-Boltzmann statistics and are consider distinguishable. 
2- the classical Maxwell-Boltzmann statistics and are consider undistinguishable. 
3-  the particles obey Fermi-Dirac statistics. 
4- the particles obey Bose-Einstein statistics.  

Solution:  
 
 

Configuration Number of states 
0 1ε 3ε MB BE FD 
xx   
 xx  
  xx
x x  
x  x 
 x x 

1 1 -- 
1 1 -- 
1 1 -- 
2 1 1 
2 1 1 
2 1 1 

 

  ( )

2 6 3 4

2 6 3 4

3 4

1 2 2 2

1

s s
s i

i

i

i

n

MB i
n i energy levels

BE i
i

FD i
i

Z e g e

e e e e e

Z g e e e e e e

Z g e e e e

 


    

     

   




    

     

   


 

     

      

   

 




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………………………………………………………………………………………………         
           The total number of arrangements possible for a particular configuration for both   F-D as well as B-E are 
(this is over all the energy levels of a particular configuration) 

                                                  ( ) ( )                       (4)i
i i

i
W n w n   

The total number of arrangements possible over all configurations is  

                                                 
 

( , , ) ( )                      (5)i
n

N V E W n  
i

 

where ),,( EVN is the partition function in microcanonical ensemble. 
Thus the entropy is                                                      

                                                     ln lnB B iS k k W n    

                                                       
Maximizing the entropy and finding out the maximum term by Lagrange’s method of undetermined 
multipliers. 

                                  ln 0                     (7)i i i i
i i

W n n n             
 

                                             )()(
i

i

i
i nwnW   

                                          ( ) ( )ln ln ( ) ln ( )i i
i i i

i i
W n w n w n          

 

                                        ( )ln ln ( )                       (8)i
i i

i
W n w n     

    For F-D statistics,                  

                                                  
)!(!

!)(

iii

ii

ngn

g
w


  

                                      

( )ln ln ! ln ! ln( )!

ln

i
i i i i

i i i

w g n g n

g g g

   

  lni i in n n  ( )ln( )i i i i ig n g n g    in

ln ln ( ) ln( )

ln ln 1 ln 1 (9)

i i i i i i i i

i i i i i
i i i i

i i i i i

g g n n g n g n

g g n n g
g n g n

g n n g n

    

       
                     
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For B-E statistics,  

                                          
)!1(!

)!1()(





ii

iii

gn

gn
w  

    

    

( )ln ln( 1)! ln ! ln( 1)!

( 1)ln( 1)

i
i i i i

i i i i i

w n g n g

n g n g n

     

      ig 1 lni i in n n  ( 1)ln( 1)i i ig g g    1

( 1)ln( 1) ln ( 1)ln( 1)

( 1) ( 1)
ln ( 1)ln ln 1 ln 1              (10)

( 1)

i i i i i i i i

i i i i i i
i i i i

i i i i

n g n g n n g g

n g n g g n
n g n g

n g n g

        

      
              

 

General form of )(ln iw  for F-D and B-E statistics is 

                       ( )ln ln ln 1                          (11)i i i i
i

i i

g g n
w n a a

n a g

   
       

   
 

                        where         1a    for BE 
                                           1a      for FD 
                                           0a     for MB 

                    

2
( ) 1 1

ln ln ln
1 1

1
ln

1

i

i ii i i i i
i i i

i i ii i ii

i i ii

i

ii

i

g a
ng g g g g

w a n n a n
n g nn a n ng a a aa g n gn

g
a

nn a
g

  

                                                                         

 
 
   
  
 






1

1 i

i

n
a

g

 
 
 
  
 

ln             (13)i
i i

i

g
n a n

n
 

 
               
 

 

                                   
                                                                
From eqns (7) and (8), 

                         0ln 



  ii

i
i

i
i nnnW                 ( )ln ln ( )i

i i
i

W n w n     

Thus, 

                          0ln 
















 ii

i

i

i
na

n

g
                        0ln 








 i

i

i a
n

g
  

)14(


 


ae

g
n i

i i  


in  is the distribution that maximizes the entropy. Hence 

   ( )ln ln ( )i
i i

i
B

S
W n w n

k
     
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From eqn (11) 

ln ln 1 ln ln 1
i

i i i i i i
i i

i iB i i i i

S g g n g g g e
n a a n a

k n a g g e a g

 

 


 



          
                

          
 

i

 

                                

            



  

i

i
ii

B

ae
a

g
n

k

S
)15()1ln()( i  

 
                                     Nn

i
i       ;    En i

i
i    

                             
i

i
B

aeg
a

EN
k

S
)1ln(

1
i  

                               
TkB

    ;    
TkB

1
  

Thus, 

                                
i

i
BBB

aeg
aTk

E

Tk

N

k

S
)1ln(

1
i

 

From thermodynamics, 

                              )16(
)(





Tk

PV

Tk

TSEG

Tk

E

Tk

N

k

S

BBBBB


 

Equation of state for a quantum ideal gas is 

ln(1 )                     (17)B
i

i

k T
PV g ae

a
     i  

                                     
In the high temperature limit,  

0,   
Hence Taylor expansion can be done, xx  )1ln(  

                                           i eag
aTk

PV

i
i

B

1
 )18(  ieg

i
i  

For an ideal gas with Maxwell-Boltzmann distribution, the equation of state is 

                                                   Nn
Tk

PV

i
i

B

         (Ideal gas law)  

But from eqn (14)                                                 

                                             
i 

 
e

g
n i

i  

Thus,  

                                            )19(  ieg
Tk

PV

i
i

B

 

 (Compare eqn (18) and (19)). Irrespective of whether it is a Bose gas or a Fermi gas, in the thermodynamic 
limit it goes over to Maxwell-Boltzmann distribution. 
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Ideal Bose gas  
          From eqn (17), the equation of state of a Bose gas is 

                                     
i

i
B

eg
Tk

PV
)1ln( i  

         zee Tk  B


 , where z is the fugacity of the gas.  

The equation of state can be rewritten as 

                                      )20()1ln(   

i
i

B

zeg
Tk

PV
i   

                                         
i

inN  
 

i

i

e

g

1i )21(
11



 

i

i

ez

g
i  

The summations in eqn (20) and (21) are sum over (energy) levels. Supposing we do a sum over states, then it is 
necessary that we give a statistical weight to each state. Since there is no restriction on the number of particles 
occupying a particular state, each state can be given a statistical weight of 1. 
         The equation of state of the Bose gas as a sum over all states is 

                                       )22()1ln(   

kB

ze
Tk

PV
k  

The total number of particles is 

                                       )23(
1

1
1




 
k ez

N
k  , where the index k is for the states.  

Eqns (22) and (23) are oft found expressions for a Bose ideal gas in texts. 
The summation can be replaced by an integral if the density of states in the neighbourhood of each energy level 
is included. 

                                             )1ln()(  zeGd
Tk

PV

B

 

                                                
  1

1
)(

1 
ez

GdN  

Density of states around each energy level is 

                                            dm
h

V
dG 2

1
2

3

3
2

2
)( 






  

The equation of state thus becomes  

                                  2
1

0

2
3

3
)1ln(2

2  








  zedm

h

V

Tk

PV

B

 

By incorporating the density of states, no weight is given to 0 state (zero momentum state) as the kinetic 
energy of the particles goes to zero in this energy level. In quantum mechanical treatment this is incorrect as the 
particles essentially occupy the lower energy states in the low temperature and high density limit where 
quantum effects become dominant. Hence it is necessary that we take this term out of the summation (eqn (20)) 
before carrying out the integration. Now, 

                            



























 



 )1ln()1ln(2
2 2

1

0

2
3

3
zzedm

h

V

Tk

PV

B

   
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                           



























 



 )1ln(
1

)1ln(2
2 2

1

0

2
3

3
z

V
zedm

hTk

P

B

   

Similarly for the total number of particles 

                                  






















 




0

1

2
1

2
3

3 1

1

1
2

2

z

z

Vez
dm

hV

N



   

         The total number of particles present in the system can be classified into 
                                              0NNN e   

                            








 





   0
1

2
1

2
3

3 1
2

2



ez

dm
h

V
N   )24(

1
2

2
2

3

3


















   z

z
m

h


      

                                                     eN                                  0N  

where eN refers to the number of particles in the excited states and 0N  is the number of particles in the 0  

state.  

          When the temperature is very high (classical limit), then z << 1 as z e  and  (chemical potential) is 

a –ve quantity. Under such conditions, the term
z

z

1
 is well behaved and does not give a significant 

contribution to N. In other words 0N << N and eN  is large. Hence most particles are in the excited states and 

not in the 0  state. But as the temperature approaches 0 K, 1z  and the term 
z

z

1
 diverges as z = 1 at             

T = 0 K. The contribution from singularity terms becomes more significant under these conditions. Here 0N  

becomes much more significant compared to eN . Thus the 0  level gets densely populated. This is what is 

called Bose-Einstein condensation. 
 
B-E Integral 
In the following expressions, 

                     )25()1ln(
1

)1ln(2
2 2

1

0

2
3

3





























 



 z
V

zedm
hTk

P

B

   

                              )26(
1

1

1
2

2

0
1

2
1

2
3

3
























 



 z

z

Vez
dm

hV

N



 

01
N

z

z



(from eqn (24)) and thus, 

10

0




N

N
z . 

The last terms in eqn (24) and (25) are significant only at low temperatures. The last terms in eqn (24) is                          

                                        )27()1ln(
1

)1ln(
1

0  N
V

z
V

                                                         Volume V, 

generally scales as N. At low temperature most particles are in the 0  state. Hence NN 0 .  The upper 

bound on eqn (27) is NN ln1  which is negligible for all z and hence the last term can be dropped. The eqns 
(25) and (26) can now be rewritten as 
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                                    )28()1ln(2
2 2

1

0

2
3

3







 



  zedm
hTk

P

B

 

                             


 












0
1

2
1

2
3

3
0 )29(

1
2

2



ez

dm
hV

NN
 

Substituting x  

                             )30()1ln(2
2 2

1

0

2
3

3







 



 x
B

B

zedxTmk
hTk

P
 

                      )31(
1

2
2

0
1

2
1

2
3

3
0 














 xB ez

x
dxTmk

hV

NN 
 

Integrals like those in eqns (30) and (31) are very common in Bose-Einstein systems.  
…………………………………………………………………………………………….... 
 Aside 
They essentially of the form  

                                   )32(
1

)(
0

1

1




 






xez

dxx
zG



             10  z , 0  ;  1,1  z  

                                 )()(
0

1

0


  





zdxxzezGLim x

z
 

It is useful to introduce another function )(zg such that 

                                )31(
1)(

1
)(

)(

1
)(

0
1

1







 






xez

dxx
zGzg



 
 

For small vales of z, the integrand in eqn (33) can be in powers of z as 

                                    
 








0 1

1 )(
)(

1
)( dxzexzg

l

lx
 

 

                                             ....
32

32

1

 





zz
z

l

z

l

l

 

For z << 1, the function )(zg , for all , behaves like z itself. For 1,1  z  )(zg  approaches the Riemann 

zeta function )(   

                                  )34(...
3

1

2

1
1

1
)1(

1

 


l l
g           

……………………………………………………………………………………………… 
 
Rewriting eqns (30) and (31) in terms of )(zg , 

                        )32()(
1

)1ln(2
2

2
53

2
1

0

2
3

3







 



zgzedxTmk
hTk

P x
B

B 


 

(Integration of eqn (30) by parts will give eqn (32))  
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                       )33()(
1

1
2

2
2

33
0

1

2
1

2
3

3
0 














 zg
ez

x
dxTmk

hV

NN
xB 


                     

                                   where  
2

1
2

2 









Tmk

h

B
  

Eqn (32) gives 

                  )34()()1ln(2
2

2
53

2
1

0

2
3

3







 



zg
V

zedxTmk
h

V

Tk

PV x
B

B 


 

What are the conditions necessary for Bose-Einstein condensation? 
Eqns (33) and (24) give us that 

                         )35()(
)2(

)(
1

2
33

2
3

2
33

 zg
h

Tmk
VzgN B

e




 

At high temperatures, z << 1 and NNe   i.e. most particles reside in the excited energy levels. )(
2

3 zg  can be 

written as a summation in terms of z          

                                                ....
32

)(
2

3

3

2
3

2

2
3 

zz
zzg     

The upper bound on the value of )(
2

3 zg  is when z = 1 

                                612.2...
3

1

2

1
1)1(

2
3

2
3

2
3  g  

The upper bound on the value on eN  is  

                                      )36(
2

3)2(
3

2
3







 


h

Tmk
VN B

e      

Thus at high temperatures with z of interest, 
                                                    )37()()(

2
3  zzg   

From eqns (35) and (36) 

                                         )37(
2

3)2(
3

2
3







 


h

Tmk
VN B

e  

So long as the total number of particles is lesser that the limiting value of eN , almost all particles occupy the 

excited states, NNe  . But if the total number of particles exceeds the upper bound of this upper bound of eN , 

then the excited states receive only as much as it can hold (as dictated by the upper bound on eN ). The rest of 

the particles will be pushed to 0  ground state. 0  energy level has no limitations on the number of 
particles that it can hold under all conditions. Number of particles occupying the ground state now becomes 

                              )38(
2

3)2(
3

2
3

0 


















 


h

Tmk
VNN B  

The condition necessary for the onset of Bose-Einstein condensation can hence be summarized as 
I    Number of particles in the system should be greater than the limiting value on eN    
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                                            )39(
2

3)2(
3

2
3

2
3







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
h

mk
VTN B       

               
II If we hold N and V constant and vary only T, we find that T has to be lesser than a particular value cT  such 

that N is greater than the limiting value of eN . 

                                                 )40(

2

32

3
2

2
































V

N

mk

h
TT

B
c  

         The following plot shows how the complementary fractions 
N

N e and 
N

N 0 vary with temperature. 

For cTT  , the particles are essentially in the excited states and negligible in the ground state. Below cT , there is 

significant population 0  energy level which drops with increase in temperature. The drop in 0N  when 

approached from T = 0 follows the equation 

                                             )41(
2

3
1

2
3

0 












c

c

c T

TT

T

T

N

N
  

This eqn (41) is obtained from eqns (38) and (40). 
 
 

                        
 

Thermodynamic properties of an ideal Bose gas 
Pressure dependence on temperature 
From eqn (34), it can be seen that, 

                                             )42()()(
2

53
 zg

Tk
TP B


  

For unit fugacity, 

                                            







2

5
)(

3



Tk

TP B  

3  has a 2
3

T dependence. Thus )(TP , in all has 2
5

T dependence. 



Prof. Dr. I. Nasser                                       Phys530, T142                                             3-Oct-17 
Bose_Fermi_lecture_examples 
 

14 
 

At the critical temperature the value of pressure is, 

                                     )43(
2

52
)( 2

52
3

2















 

cc kT
h

m
TP  

From eqn (40), eqn (43) can be rewritten as 

                      )44(5134.0

2

3

2

5

)( 






























 cBcBc Tk
V

N
Tk

V

N
TP




 

According to the ideal gas law, 

                                                     Tk
V

N
P B  

Hence the pressure exerted by an ideal Bose gas is almost half of that applied by an equivalent Boltzmannian 
(classical ideal gas) at the critical temperature. 
The pressure exerted by the ideal Bose gas above the critical temperature, cTT   is  

                                            





 Tk

V

N

zg

zg
TP Bc )(

)(
)(

2
3

2
5

 

Internal energy of an ideal Bose gas 
Statistical thermodynamics gives us 

                                                ln
Tk

PV

B

 

where  is the grand canonical partition function. 
The internal energy of a system can be evaluated using the grand canonical partition function (using eqn (34)). 
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                                               )35()(
2

3
2

53
 zg

V
TkU B 

         

For an ideal gas 

                               







V

U
P

3

2
      

Specific heat of a Bose ideal 
Specific heat is given by 

                            )36()(
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
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d
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An implicit assumption is that  
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For unit fugacity, 
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It has a 2
3

T dependence on temperature. This is how the specific heat behaves in the low temperature limit. 
At the critical temperature cTT   (from (37) and (38)), 

                                    925.1

2

3

2

5

4

15)(













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
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

B
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For cTT   ( )0z , it is the classical limit of an ideal gas. Assuming the gas to be monoatomic, the specific 

heat is 

                                                   
2

3
VC  

 
A cusp can be seen in the plot. This is a consequence of a phase transition that occurs at cTT   which gives rise 

to a sudden change in the density. 
         An experimental evidence for Bose –Einstein condensation came from the ),( TCV relationship of He4. 

Phase transition of He4 was found to occur at 2.19 K. When the mass, 2410*65.6 m  and volume, 
6.27V cm3/mole were substituted in eqn (40) to find theoretically find out the transition temperature it was 

found to be 3.13. The two numbers were not drastically different and the similarity between the ( VC  vs. T) plot 

of an ideal Bose gas and that of He4 was enough evidence to prove that the phase transition in He4 is actually 
Bose-Einstein condensation. 
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Struck by the shape of this graph, the phase transition was given the name  transition by Keesom and the 
transition point was called  transition point. 
 
 


