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Ideal Bose-Einstein Gas 
 Start with the maximum probable distribution ( )if  , where: 
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ig  is the degeneracy of the state and  is the chemical potential. Define    , e e z    , where z is 

the fugacity of the gas. With the conservation of energy, it is required that: 
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The summation in Eqn. (2) is sum over (energy) levels. Supposing we do a sum over states, then it is necessary 
that we give a statistical weight to each state. Since there is no restriction on the number of particles occupying 
a particular state, each state can be given a statistical weight of 1. 

The condition 1e   , or 0  , is required to have positive numbers of particles. As the total number 

of particles in the ground state, i.e. 0o  , is oN N  we have 
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As N  , we find 0  , or 1e   
 
Mathematical Description: 
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Where  3/ 2
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. Eqn (3) are often found expressions for a Bose ideal gas in texts. 
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Where x  , and 
2 B

h

mk T



 is the De-Broglie wave function.  

 By incorporating the density of states, no weight is given to 0 state (zero momentum 
state) as the kinetic energy of the particles goes to zero in this energy level. In quantum mechanical treatment 
this is incorrect as the particles essentially occupy the lower energy states in the low temperature and high 
density limit where quantum effects become dominant. Hence it is necessary that we take this term out of the 
summation (Eqn. 2) before carrying out the integration. 
 For the density of states we have to revise it in the form: 
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,                  = Dirac’s delta function 
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Then we have for the total number of particles: 
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where eN refers to the number of particles in the excited states and 0N  is the number of particles in the 0  

state.  

 
Schematic diagram of the distribution function for the particles of an ideal BE gas. 

 
 

 When the temperature is very high (classical limit), then z << 1 as z e  and  is a –ve 

quantity. Under such conditions, the term
z

z

1
 is well behaved and does not give a significant contribution to 

N. In other words 0N << N and eN  is large. Hence most particles are in the excited states and not in the 0  

state. But as the temperature approaches 0 K, 1z  and the term 
z

z

1
 diverges as 1z  at T = 0 K. The 

contribution from singularity terms becomes more significant under these conditions. Here 0N  becomes much 

more significant compared to eN . Thus the 0  level gets densely populated. This is what is called Bose-

Einstein condensation. 
 
Bose-Einstein Integral 
=============================================================== 
Home work: Prove that (See Pathria Appendix …) 
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Plot 3/ 2 ( ) , 0 1zg z e z    

Check 3/ 2 3/ 2
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where  is the Riemann zeta function. This is the maximum possible value of 3/ 2 ( )g z .    

 

FIg. (a) The functions 3/ 2 ( )g  , curve A; 5/ 2 ( )g  , curve B; and ( )g e  
  , curve C. 

                          (b)The function 3/ 2 ( )g z . Note that z e   

 

=============================================================== 
We can define a (minimum) critical temperature T, at which z has a maximum value 1. Use the value: 
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As eN N , and cT T , we have 
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Divider Eq. 6 by Eq. 7 gives the maximum number of particles occupying states above the ground state is 
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must condense into the ground state. This rapid increase in the population of the ground state below cT  is called 

Bose-Einstein condensation. 
 
HW. For 4 He  calculate cT  at 1 atm. 

Answer: 
Use 236.02 10  molecules/molAN N   , 27 274 1.66 10 6.65 10  kgm       , and 3 322.4 10  m /moleV   , 

then 
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It is small compared to the experimental value 4.21 K .  
 
The Properties of Ideal Bose-Einstein Gas  
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NOTES: 

1. B.E. condensation can occur only when the particle number is conserved. For example, photon do not 
condense, they have a simpler alternative, namely,  to disappear into the vacuum. 

2. At cT T the system may be looked upon as a mixture of two “phases” 

(a) A gaseous phase [Ne], particles distributed over the excited states ( 0  ), and 
(b) A condensed phase, consisting of [ oN ] particles accumulated in the ground state ( 0  ). 

 
 
  

 
We can define a (minimum) critical temperature T, at which z has a maximum value 1 

 
If we have one mole of gas, so that N is Avogadro’s number, 
 

 
where M is the molecular weight and VM is the molar volume in cm3 mol’. 
Example: For Helium, M = 4, VM = 27.6 cm3 , this implies T = 3.14 K, (exp. = 2.18 K). Bose-Einstein 
Condensation:- 
 
 

Bose-Einstein Condensation:- 
The expression 

 
has no solution for cT T  because 3/ 2 3/ 2( ) (1)g z g . This difficulty does not occur in the original sum. For low 

temperature, cT T  this changing from summation to integration cases a serious error. Large contribution from 

the first few terms are left out because of ( 0) 0g    . 

For small z (or large e  ), the terms with the lowest do not contribute much to the sum, and so replacement of 
the sum with an integral causes little error. However, when z is approaching 1 (or e   is small), the first few 
terms in the summation become important, and so we can not replace the sum with an integral.  
 
AT low temperature the ground state is important an should be treated separately. So, 

 
where    is the Dirac delta function. The total number of particles N could be separated to 
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where N0 is the number of particles in the ground state, and Ne is the number of particles in the excited state. 
Also, 

3/ 2

3/ 2

3/ 2

( )

(1)e
c

g zT
N N

T g

 
  

 
 

eN  has its maximum value when 0  . 

 
 
NOTES: 

3. B.E. condensation can occur only when the particle number is conserved. For example, photon do not 
condense, they have a simpler alternative, namely,  to disappear into the vacuum. 

4. At cT T the system may be looked upon as a mixture of two “phases” 

(a) A gaseous phase [Ne], particles distributed over the excited states ( 0  ), and 
(b) A condensed phase, consisting of [ oN ] particles accumulated in the ground state ( 0  ). 
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The Properties of Ideal Bose-Einstein Gas  
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An experimental evidence for Bose–Einstein condensation came from the ),( TCV relationship of 4 He . Phase 

transition of 4 He  was found to occur at 2.19 K. When the mass, 27 274 1.66 10 6.65 10  kgm        and 

volume, 3V 27.6 cm /mole cm3/mole the transition temperature it was found to be 3.13. The two numbers 

were not drastically different and the similarity between the ( VC  vs. T) plot of an ideal Bose gas and that of 
4 He was enough evidence to prove that the phase transition in 4 He  is actually Bose-Einstein condensation. 
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Struck by the shape of this graph, the phase transition was given the name  transition by Keesom and the 
transition point was called  transition point. 
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H.W.  Show that for an ideal boson gas P u , where P is the pressure, u the energy density and  a 
constant.  What is  ? 

Answer 
Using results in section 7.H.1d., we have 
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Comparing with  
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we have 
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