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Black Body Radiation 
  

The amount of heat radiation emitted by a body depends on three things: 

  

I- the surface area of the body, 

II- the type of surface, and 

III- the temperature of the body. 

 

Ideal model for the black body 

                                                         

Comments and laws of black body radiation: 

 

1- Electromagnetic radiation in thermal equilibrium 

inside an enclosure. 

2- Black surfaces are the best emitters and absorbers of 

radiation at a given temperature. 

3- The distribution of the energy flux over the 

wavelength spectrum does not depend on the nature 

of the body but does depend on its temperature. 

4- The maxima of the curves tend towards short 

wavelengths at higher temperature. 

5- The area between any curve and the wave length axis 

gives the total energy emitted by the body at that 

temperature ( 4T ) Stefan's law. 

6- The curves at lower temperature lie completely 

inside those of higher temperature. 

7- Stefan's law: The total energy flux,  , (total energy emitted by a black body per unit area of surface per 

second) is proportional to the fourth power of the body's absolute temperature (T ), 4T  , where 

8

2 4

W
5.67 10   

m  K
    is the Stefan's constant. 

8- Wien's displacement law: -3

max 2.9 10   m KT   . max  is the wavelength at which most energy is 

emitted, that is the peak of the curve. Energy emitted at this wavelength is proportional to 5T . 

 

Let us consider the electromagnetic radiation (or in quantum-mechanical language, the assembly of 

photons) which exists in thermal equilibrium inside an enclosure of volume V whose walls are maintained 

at absolute temperature T . In this situation photons are continuously absorbed and remitted by the walls; it 

is, of course, by virtue of these mechanisms that the radiation inside the container depends on the 

temperature of the walls. The total number of modes (density of quantum states) lying in the momentum 

range  p  to p dp  is: 

2

3

2

3

( )d 4 d    2 polarization states

8 d

V
g p p p p

h

V
p p

h





 
  
 

 
  
 

 

where the factor of “2” is to take into account the fact that light has two independent directions of polarization.  

λ 

T1 

T2 

Eλ 

Planck 

Rayleigh-Jeans 

Wien

 

T2 > T1 
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Using  
c

h
p


  and d d

c

h
p  , then in the frequency range   to d   we have: 

2

3
( ) 8

V
g d d

c
    

 
  
 

. 

where c  is the speed of light. Then the Bose-Einstein distribution for photon is: 
2

3

( )
( ) ( ) 8

1 1

g d V d
dn n d

e c e   

   
   

 

 
    

  
 

where h  . The requirement that the Lagrangian multiplier 0   simply means dropping the condition 

0iN n   , for the fixed number of particles. Photons differ from other bosons in that their total number 

is not conserved.  

The number of photons in a given frequency interval is plotted in the figure, 

where x h  . Note that the peak in the number of photons per unit frequency 

occurs at 1.59x  , i.e. at a frequency of  1.59 / h  . This can be easily be 

deduced by maximizing ( ).n   

 

If ( )dn  multiplied by the energy of photon h  , the result is the energy per unit 

volume, i.e. the energy density in the form: 
2 3

3 3

8 8
( ) ,            Planck's law

1 1h h

d h d
u d h

c e c e   

     
    

 
 

 

H.W. Prove that the peak of the above function will be at 2.82 Bk T
   

By using the dimensionless parameter h   , i.e. the ratio of photon energy to the thermal energy, one can 

have: 
42 3

3 2 3
( ) 8

1 1

B

h

k Td d
u d h

c e c e  

   
   



 
    

  
 

Comments: 

i- For small frequencies, long wavelength ( 1, )Bh k T     we 

have   1he h      and 

           
2

3

8
( ) ,                   Rayleigh-Jeans law Bk T

u d d
c


     

ii- For high frequencies, short wavelength ( 1, )Bh k T    we have 

            
3

3

8
( ) ,                   Wien's law hh

u d e d
c

 
     

iii- maximize using 

3

0
1

du d d

d d e

 

 
 


 we have  3 3 0e e             

By solving the above equation within an approximation max constanth    . This implies that 

max constant
T


 , i.e. max constantT  . This is the Wien displacement law. 
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By using the following equation: 
4 3

2 3
( )

1

Bk T d
u d

c e

 
 



 
  

 
 

Hence the internal energy per unit volume is: 
4 3

2 3

0 0

4 5 44
4 16 3 4

2 3 3 3

( , )
1

8
,                         7.55 10  J m K

15 15

B

B B

k TU
U T d d

V c e

k T k
bT b

c c h




  







 

  

 
   

 

  
      

   

 
 

 

This statement is called Stefan-Boltzmann's law. Consequently 

34v

V

u
c bT

T

 
  

 
 

  

H.W.:  Prove that in case no restrain on in , i.e.  0in  , the partition function is: 

photon

1

1

1 i

i

Z
e









  

Then, 

4

3

4

4

1
,

3

4
,

3

,

1 1

3 3

F bVT

S bVT

U F TS bVT

U
P bT

V

 



  

 

, 

 

Example: The radiation pressure, the mean radiation pressure could be calculated as 

s
s

s

P P n
V

 
   

 
  

 
The radiation pressure is thus very simple related to the mean energy density of the radiation. It is different than 

for the Ideal gas where 
2

3
P U . 
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4 4

3

3
2 3

0 0 0 0

, ,

4 ,

4
4 4

3

V

V

T T T T
V

u aT U bT V

U
C bT V

T

C dTdQ T dT
S bV bV T dT bVT

T T T

 

 
  

 

       

 

4 3

4 3 4

4
,

3

4 1

3 3

U aT V S aVT

F U TS aT V T aVT aT V

 

     

 

4 3 4

4

,

4 1
, ,

3 3

1 1 1

3 3 3T N

U aT V S aVT F aT V

F U
P aT u

V V

   

   
       

   

 

 

Example: calculate the total electromagnetic energy inside an oven of volume 1.0 m3 heated to a temperature of 

400 F 

Solution: use the equation 4 16 3 4, 7.55 10  J m KU bVT b       

 
4

4 16 5400 32
7.55 10 1 273 3.9 10  J

18
U bVT   
        

 
 

             

Example: Show that the thermal energy of the air in the oven is a factor of approximately 1010 larger than the 

electromagnetic energy. 

Solution: 

 

3

6

10

3 1000 400 32
8.314 10 273

2 22.4 18

1.77 10 J

which is 10 times larger than the value of

Thermal energy nRT

b

   
        

   

   

Example: The radiation pressure at the surface of the sun ( o6000 CT  ) is 

 

 
 

5 5
4

4

3

1 8 8
() ??

3 45()45
BP bT k T

ch

 
     

A standard result in kinetic theory is that the energy flux,  , through a hole of unit area is: 

1

4

U
c

V
   

where c  is the mean speed of the particles. And so the total energy flux (i.e. the energy emitted per unit area 

per unit time by a blackbody) is  

 
5

4
4 4

2 3

1 1 2

4 4 15
B

U
c cbT k T T

V c h


      
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This is known as Stefan’s law, and 8

2 4

W
5.67 10   

m  K
   is Stefan’s constant. 

Useful Integral and summation: 

0

1

1

n x

x
n

e
e










  

2
612.2

1
0

2/1 





dx
e

x
x

 ,             
151

4

0

3 





dx
e

x
x

  ,             
  15

4

1

4

0

2

4 






dx
e

ex

x

x

 

 
 

  
 

Example:Assume that the radiation from the Sun can be regarded as blackbody radiation. The radiant energy 

per wavelength interval has a maximum at 480 nm. 

(a) Estimate the temperature of the Sun. 

(b) Calculate the total radiant power emitted by the Sun. (The radius of the Sun is approximately 7x108 m.) 

a)  maxT = 2.90 ×10
-3

 m·K,  so  
m 1080.4

Km 1090.2Km 1090.2
7

3

max

3














T  

T = 6.04 ×10
3
 K = 6040 K 

 

b)  284-4-28244 m) 100.7(4)K 6040)(Km W1067.5(4    RTATP  

P = 4.65 ×10
26

 W 
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Helmholtz Free Energy 

As long as we don’t want any detailed information about the microstates of a system, we can determine 

its properties from the thermodynamic potentials instead of from the partition function. In particular we can use 

the Helmholtz free energy. 

Using:     
photons

1

1

1 e i

i

Z










 , then 

 

B photons

B B

states, 1 levels, 1

ln

ln(1 e ) ( ) ln(1 e )dir

i i

r i

F k T Z

k T k T
   




 

 

    
 

Using 

2

2 3
( )d d

c
V


   


 , we have 

2

B 2 3

0

 ln(1 e )d
c

V
F k T  






   

Letting    ,   d dx x     , we get 

2

3 3 2
2B B

B B2 3 2 3

0

45

4

 ln(1 e )d
c c 45

1
   

3

xV k T V k T
F k T x x k T

bVT





 







   
      

   

 



 

 

Entropy 

4 31 4
=

3 3V

F
S bVT bVT

T T

    
       

    
 

Pressure 

 

4 41 1

3 3T

F
P bVT bT

V V

    
        

    
 

 

Internal energy  
4U F TS bVT    

Pressure: the pressure can then be rewritten 

1

3

U
P

V
  
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Show that for an ideal boson gas P u , where P is the pressure, u the energy density and  a constant.  What 

is  ? 

Answer 

Using results in section 7.H.1d., we have 

 
  2

2 2

3 1

0 2

4 1

e 22
e

p
m

z V z
E n dp p p

z m
z




 






 
 
 

  




  k

k
k k

k k

  

   

Using 2 Bp mk T x  
2

T

x



 , we have, 

 

     
     

 

5
2

4 4

3 52 2

0 0

2 2

4 5/ 25 5

2

5/ 25

4 1 2 8

2 exp exp2

8 8 1 5

2 2

3

T T

T T

T

V z V z
U E dx x dx x

m mx z x z

V V
K z g z

m m

V
g z

m

  

 

 

 




 



 
        

 
    

 



 

 

    
2

5/ 25

3

T

U
u g

V m




   

Comparing with  

   
2

5/ 2 5/ 23 5

1 2
B

T T

P k T g z g z
m



 
    

we have 

2

3
P u  

 

Consider the photons in equilibrium inside a cubic box with volume 3V L  and temperature T at the walls.  The 

photon energies are i ick  , where ki is the wavevector of the ith standing wave.  Compute pressure P of this 

photon gas. 

Answer 

The allowed photon states are standing waves that vanish at the walls.  Thus, 

  , ,x y zn n n
L


k  with  1,2,jn    for , ,j x y z  

so that 

 2 2 2

x y z

c
ck n n n

L


         (3) 

and 

 
k

 

3

3

, , 0x y zk k k

L
d k




 
 
 

  

3

3

2

L
d k



 
  
 

  

Since there are 2 transverse modes for each k, the sum over modes is 
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  
1,2

,f






k

k   
3

3

1,2

,
2

L
d k f




 

 
 
 

  k  

When f is independent of polarization, we have 

    
1,2

2f f


  
k k

k k   
3

32
2

L
d k f



 
 
 

 k  

Since ' 0  , the grand partition function is 

    expZ T Tr H   
 

 
, 0 ,

exp
n

n
 

 




   
    

  
 

k

k k

k k

 

   
, 0

exp
n

n


 




 
  

 
 

k

k k

k

 
 ,

1

1 exp  

 
  

  

k k

 

  
 

2

1

1 exp  

 
  

  


k k

        (1) 

which gives a grand potential 

    , , lnBT V k T Z T     
,

ln 1 expBk T


      k

k

  (2) 

   
3

32 ln 1 exp
2

B

L
k T d k  



 
      

 
 k

 

Using 

    3 24d k f k dk k f k   2

3

4
d f

c c

 


 
  

 
  

we have 

  
3

2

0

ln 1 expB

L
k T d

c
   




 

       
 

      (2a) 

Now, 

  2

0

ln 1 expI d  


       3

0

1
ln 1 exp

3
d  



      

   
 
 

3 3

0 0

exp1 1
ln 1 exp

3 3 1 exp
d

  
   

 

  
          (2b) 

The 1st term involves the function 

    ln 1 xf x x e   

In particular 

   21
lim 0

2

x x

x
f x e e 



  
       

  
  

where we've used 

   21
ln 1

2
x x x     

and, by repeated application of the L'Hospital rule, 
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 
 

'
lim lim

'x a x a

f x f

g x g 
  

to get 

 
1 !

lim lim lim lim 0
n n

n x

x x xx x x x

x nx n
x e

e e e




   
     

Also 

    
0

1

0 lim ln
!

n
n

x
n

x
f x

n






  
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Hence, (2b) becomes 

 
 
 

3

0

exp1

3 1 exp
I d

  


 

 
 

   
 

3

3

0

1

13

x

x

e
dx x

e

 


 

   (2c) 

Now, 
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where  is the Reimann zeta function.  Thus, (2c) becomes 
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Hence, eq(2a) is 
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The pressure is 
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where 

3 21

15
Bk

c




 
  

 
 is the Stefan- Boltzmann constant. 

   

 

Photons  Sec 7.4 

a. Photon gas 

Consider electromagnetic radiation inside a box.  We may regard the electromagnetic field as a superposition of 

standing waves that fit between the walls of the box.  The system, then, consists of these standing waves, rather 

than literal atoms oscillating back and forth.  The energy of a standing wave of a particular frequency, f, is 

quantized ihfEi  .  Therefore, the sum over states for a single frequency is 
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This expression is known as the Planck Distribution.  Since each quantum of EM energy is hf, the average 

number of photons of frequency f is 

1
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In effect, we are treating the system as a gas composed of photons. 

 

b. Total energy 

We have the average energy of photons of frequency f in the box.  The total energy contained in the box is 

obtained by summing over the allowed frequencies.  The frequencies are restricted by the finite volume of the 

box.  For instance, along the x-axis, the frequencies of standing waves that will fit in the length Lx are 
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 .  The corresponding energies are 
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axes.  In three dimensions, 222
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E  .  (Let’s say the box is a cube of side L.)  The total energy of 
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We are adding up the points in a spherical volume of radius 222

zyx nnnn  .  Since the number of photons in 

the box is very, very large at any but very low temperatures, the sum can go over to an integral. 
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Now let us change variables from n to En.   
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We can now compute also the heat capacity and entropy of the photon gas. 
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c. Black body spectrum 

What we have here is the energy per unit volume per unit energy, 
 

1

8
)(

3

3




kT

E

e

E

hc
Eu


, also called the spectrum 

of the photons.  It’s named the Planck spectrum, after the fellow who first worked it out, Max Planck. 
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)

 

Notice that 4T
V

U
 , and that the spectrum peaks at kTE 82.2 .  These “Laws” had been obtained empirically, 

and called Stefan-Boltzmann’s “Law” and Wein’s Displacement “Law.”   

 

d. Black body radiation 

Of course, the experimentalists were measuring the spectra of radiation from various material bodies at various 

temperatures.  Perhaps we should verify that the radiation emitted by a material object is the same as the 

spectrum of photon energies in the oven.  So, consider an oven at temperature T, and imagine a small hole in 

one side.  What is the spectrum of photons that escape through that hole?  Well, the spectrum of the escaping 

photons must be the same as the photon gas in the oven, since all photons travel at the same speed, c.  By a 

similar token, the energy emitted through the hole is proportional to T4. 
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Finally, we might consider a perfectly absorbing material object exchanging energy by radiation with the hole 

in the oven.  In equilibrium (at the same T as the oven), the material object (the black body) must radiate the 

same power and spectrum as the hole, else they would be violating the Second “Law” of thermodynamics. 

 

  

 


