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Real gases

Partition function of the ideal gas
For an ideal (Boltzmaan) gas consisting of N indistinguishable molecules of massm , we have
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The single-particle partition function (for N =1)is
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where we replaced the sum over discrete states by an integral over the phase space. n,, = :( hzﬁ J IS
called the “quantum concentration” and n :Vl is the concentration. The n,, is the concentration associated
h

with one particle in a cube of side A4 =

\J2zmk ;T .
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Partition function of the real gases )

. ; Repultion
In real gases, we must take into account the intermolecular forces and the I

finite dimension of the molecules. The intermolecular forces are of fairly
short range and decrease rapidly with increasing the distance between
molecules (atoms). For real gases
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where Z, is the configurational partition function of the gas. Z,, =1 for ideal gas.
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Define the Mayer's function as:

f, =e
which measure the degree of imperfection of the gas and it is equal to
zero for ideal gases.
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Fizure 1: Intermolecular potentizl energy and Maver s fundion

Cluster expansion
The above expansion is called the “Virial*” or “cluster” expansion.
The first term is used in case of the ideal gas and the second term will leads to:

B, =V [ Y 0% -d%n, =V I N(N-D)| [ £, d°rd’r, dPr - d’r,

The above square bracket gives the number of ways that we can choose pairs of molecules, and for it gives

2
Z:1 N(N -1 :NT if N >>1 which is the normal case.
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*The word "virial™ is related to the Latin word for force. Clausius named a certain function of the force
between molecules "the virial of force.” This name was subsequently taken over for the virial expansion
because the terms in that expansion can be calculated from the forces between the molecules.

The two body integrals

The two body integrals could be solved by using the transformation

_(h+r)

r=r,—-r, (relative), R (center)
Then
oy o
17 6"27
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Using d°R =V , and

\Y
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where I, = (e —1)dr proportional to the volume of the molecule. The partition function Z, will be:

Z, :1+N(x)+---z(l+x)N, x:%«l
For single particle:
In(Z,)=In(1+x)=x, x<<1

We used the expansion In[1-x ]~ x, where x <<1. Consequently, we have



Prof. Dr. |. Nasser Phys430, T172 27-Mar-18
Real_gases

_ _| NI,
InZ, =N[InV + f(T)], InZU—{ZV}

Pzi(aan] :i(alnzpj +£(a|nzuj _NkgT | [ N2I, | NKgT () NI
BL oV )iy BLU N iy LN ), V ®l2v? % 2V

In general
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The coefficient, B (T ) :—IEZ, I, =I(e“’“(” —1)dr is a function of temperature and is called the "second

virial” coefficient. C(T) is called the “third virial” coefficient, and so on. The expansion is, in principle, an
infinite series, and as such should be valid for all isotropic substances. In practice, however, terms above the
third virial coefficient are rarely used in chemical thermodynamics.

Notice that
1- We have set the quantity PV = Nk,T equal to Z. This quantity (Z) is called the "compression factor."

It is a useful measure of the deviation of a real gas from an ideal gas. For an ideal gas the
compression factor is equal to 1.

2- The virial expansion breaks down not only at high densities, but also at low temperatures. This is
suggested by the divergences in B(T) as T — 0, and reflects the fact that in the presence of attractive
interactions the particles can lower their energy at low temperatures by condensing into a liquid state.

Applications:

I. Rigid sphere model
The Model of hard sphere is given by (see figure 1):

0, 0<r<2r
u(r)=
0, r> 2r0 u(r)
where r, is the radius of the molecule. Find the second virial coefficient. _ @
Answer: The second virial coefficient could be calculated as follows: 0 2r, r "
! 0, r>2r, - . > (b)
© 0 f(}']
B(r)———2=—1'[ A _ d . I( 1)r2dr+j(0)r2dr
2 25 4m dr 20 2r, -1
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4 , .
The constant b equals to4V, , whereV = §7Z'I’O3 is the volume of the molecule. Thus, the equation of state

for a gas of rigid sphere is

P= Nk, T [1+N—b +}
\ Vv
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Next, estimate the magnitude of V—b for air at room temperature and pressure. The volume of a molecule is

~10*cm?, and at STP, p:g;&do” molecules/cm?®. Thus, \';I—b ~10°. Higher terms in p?, p°,--- can

be shown to be smaller. Thus,

=PV N
PV = NK,T + NK;T

Hence,
PV —4NV, ]~ NkgT

o

b=Nk,T+PN b

Evidently, the equation of state is the same as for an ideal gas, if the container volume is replaced by a

reduced volume obtained by subtracting four times the volume of all the molecules, i.e. V

Il. van der Waals Gas
For van der Waals gas, we will use the potential:

0(r) = 0, 0<r<2r
1 u.

r>2r,
where U is a function of r. Find the second virial coefficient.

Answer: The second virial coefficient could be calculated as follows:
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a comes from the long range weak attraction force between the molecules, b comes from the volume V , of
the molecules. Finally

p= ML
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Then

N2
(P+Waj(v ~Nb) = NRT
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Figure description A

P Curve 3 Curve 2

Curve 1 for attraction forces, Curve 2 for the repulsive force, Curve 3
is the resultant.

The equation is satisfied with fairly good accuracy by many real gases,
especially for large value of v=V /N. The coefficients a and b are
called van der Waals constants. They are given in the following table

for several real gases.
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Substance a, b,
Nm“*kg?mole? | m°kg”mole™ .
Helium 3.446x10° | 0.02370 '
Hydrogen 2.468x10* | 0.02661
Nitrogen 1.404x10° | 0.03913
Sulfur dioxide | g 781x10° | 0.05636
Water 5519x10° | 0.03049
Simplify van der Waal’s equation, one has:
(P+%a}(v—b):RT = P:E—%, v=V/N
Vv v-b v

(Pv+1aj—(a—g+ij: RT
Y Vv

Or
PV’ —(Pb+RT)Vv*+a(v-b)=0
P ‘ .
Van der Wadls egn
292N 4 Tieline

:“‘ql /' H

: ' -

Vi Ve v
Comments:

1- a and b are constants. “a” is used to correct for the intermolecular attractions and “b” is used to correct
for the finite size of the molecules, it is the excluded volume due to the finite size of the molecules.
2- It is a cubic equation in v with three roots, only one of which need to be real.

3- As T increases. T >T_the curves approach PV= constant. i.e. the ideal gas law.

4- For T <T, there is a local maximum and minimum value of P.

5- Between the two type of curves is a curve having an inflection point C P. the so called critical point,
T =T,

6- At T, one can have

3 RT, _a
¢ V.-b Vf
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2
with the conditions (ﬁj -[ 2 Pz =0.ltiseasytofindv, =3b, P, =
ov o \ov® L

which give PV, = g RT, foravan der Waals’ gas at the critical point.

c

7. Derivatives
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vidP + 3v2Pdv — (bdP + RAT)v} — 2v(bP + RT)dv + adv = 0

8- Internal energy

(@j _T(EJ po MR Ry [y a1 L
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9. Work done
v ““ R Vj an’
W =[PdvV = [ ————dV - [ ZdV
in. in. (V _nb) v, V2
_nRT In[ = | gy 2L
V, —nb V, V.
10. Heat
Q =Au +W
11- Putting dP = 0: Volume expansion coefficient
p-d{2) - R ___R®
VAOT Je {BPV ~2(bP +RT )+a} Pv —\"/"+i""f’
v

( 2a bP  3ab jl
=—|1- + + >
T RTv RT RTv
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12- Putting dT = 0: compressibility coefficient

., T, = .
©T 2% ¢ 27Rb
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13- Specific heat
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Which implies the specific heat is P and v independent. It is T dependent.

Note:

14. Joule coefficient

15, Joule-Thomszon coefficient
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16. Enthalphy
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