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Real gases 
Partition function of the ideal gas 

For an ideal (Boltzmaan) gas consisting of N  indistinguishable molecules of mass m , we have 
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The single-particle partition function (for 1N  )is 
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where we replaced the sum over discrete states by an integral over the phase space. 
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called the “quantum concentration” and 
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n
V

 is the concentration. The 
Qn  is the concentration associated 

with one particle in a cube of side 
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For N-particles: 
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--------------------------------------------------------------------------------------- 

Partition function of the real gases 

 

In real gases, we must take into account the intermolecular forces and the 

finite dimension of the molecules. The intermolecular forces are of fairly 

short range and decrease rapidly with increasing the distance between 

molecules (atoms). For real gases 
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where UZ  is the configurational partition function of the gas. 1UZ   for ideal gas. 

( )( ) 3

i

1

1 1 N
UU

U N N
i j i

Z e d e d r
V V

 

 

 
     

 
  

ijrr r  

 



Prof. Dr. I. Nasser                                       Phys430, T172                                             27-Mar-18 

Real_gases 
 

2 

 

Define the Mayer's function as: 
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which measure the degree of imperfection of the gas and it is equal to 

zero for ideal gases. 
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Cluster expansion 
The above expansion is called the “Virial*” or “cluster” expansion. 

The first term is used in case of the ideal gas and the second term will leads to: 

2

3 3 3 3 3 3

2 1 12 1 2 3

1

2
( 1)

N

N N

ij N N

j i
V

B V f d r d r V N N f d r d r d r d r



 



 
 
 

     

The above square bracket gives the number of ways that we can choose pairs of molecules, and for it gives 
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    if  1N   which is the normal case. 
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*The word "virial" is related to the Latin word for force. Clausius named a certain function of the force 

between molecules "the virial of force." This name was subsequently taken over for the virial expansion 

because the terms in that expansion can be calculated from the forces between the molecules. 

------------------------------------------------------------ 

The two body integrals  
The two body integrals could be solved by using the transformation 

1 2r = r r     (relative) ,             
)

2


1 2

(r r
R =       (center) 

Then 

1 2

1 2

3 3 3 3 3 3

1 2 1 2

1 1

1 1

2 2

.

r r

r r

R R

r r

d r d R d r d r d r d r

 
 

 

 
 

 

   

----------------------------------------------------------------------- 

Using 3 d R V , and 
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r  proportional to the volume of the molecule. The partition function UZ  will be: 
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We used the expansion  ln 1 ,x x  where 1x  . Consequently, we have 
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In general 
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The coefficient, 2( )
2

I
B T   ,  ( )

2 1u rI e d  r  is a function of temperature and is called the "second 

virial” coefficient. C(T) is called the “third virial” coefficient, and so on. The expansion is, in principle, an 

infinite series, and as such should be valid for all isotropic substances. In practice, however, terms above the 

third virial coefficient are rarely used in chemical thermodynamics. 

 

Notice that  

1- We have set the quantity 
BPV Nk T equal to Z. This quantity (Z) is called the "compression factor." 

It is a useful measure of the deviation of a real gas from an ideal gas. For an ideal gas the 

compression factor is equal to 1. 

2- The virial expansion breaks down not only at high densities, but also at low temperatures. This is 

suggested by the divergences in B(T) as T → 0, and reflects the fact that in the presence of attractive 

interactions the particles can lower their energy at low temperatures by condensing into a liquid state. 

----------------------------------------------------------------------------- 

Applications:  

I. Rigid sphere model 
The Model of hard sphere is given by (see figure 1): 
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where 
or  is the radius of the molecule. Find the second virial coefficient. 

Answer: The second virial coefficient could be calculated as follows: 
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The constant b  equals to 4 oV  , where 34

3
o oV r  is the volume of the molecule. Thus, the equation of state 

for a gas of rigid sphere is 
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Next, estimate the magnitude of  
N

b
V

for air at room temperature and pressure. The volume of a molecule is 

23 310 cm , and at STP, 20 33 10  molecules/cm
N

V
    . Thus, 310

N
b

V

 . Higher terms in 2 3, ,   can 

be shown to be smaller. Thus,  
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Hence,  

 4 o BP V NV Nk T   

Evidently, the equation of state is the same as for an ideal gas, if the container volume is replaced by a 

reduced volume obtained by subtracting four times the volume of all the molecules, i.e. 4red oV V NV  . 

------------------------------------------------------------ 

II.  van der Waals Gas 
For van der Waals gas, we will use the potential:  
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where U is a function of r. Find the second virial coefficient. 

 Answer: The second virial coefficient could be calculated as follows: 
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a comes from the long range weak attraction force between the molecules, b comes from the volume 
oV of 

the molecules. Finally 
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Figure description 

 

Curve 1 for attraction forces, Curve 2 for the repulsive force, Curve 3 

is the resultant. 

The equation is satisfied with fairly good accuracy by many real gases, 

especially for large value of v /V N . The coefficients a  and b  are 

called van der Waals constants. They are given in the following table 

for several real gases. 

 
Substance 

4 -2 -2

,

Nm kg mole

a
 

3 -1 -1

,

m kg mole

b  

Helium 33.446 10  0.02370  

Hydrogen 42.468 10  0.02661  

Nitrogen 51.404 10  0.03913  

Sulfur dioxide 56.781 10  0.05636  

Water 55.519 10  0.03049  

Simplify van der Waal’s equation, one has: 
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Comments: 
1- a and b are constants. “a” is used to correct for the intermolecular attractions and “b” is used to correct 

for the finite size of the molecules, it is the excluded volume due to the finite size of the molecules. 

2- It is a cubic equation in v with three roots, only one of which need to be real. 

3- As T increases. 
c

T T the curves approach PV= constant. i.e. the ideal gas law. 

4- For 
c

T T  there is a local maximum and minimum value of P. 

5- Between the two type of curves is a curve having an inflection point C P. the so called critical point, 
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with the conditions 
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. It is easy to find 
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c c cPV RT for a van der Waals’ gas at the critical point. 

7. Derivatives 
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8- Internal energy 
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9. Work done 
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10. Heat 

Q u W    

 

11- Putting 0dP  : Volume expansion coefficient 
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12- Putting 0dT  : compressibility coefficient 
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13- Specific heat 
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Note: 
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Which implies the specific heat is P and v independent. It is T dependent. 
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