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What are the properties of the Phase Transition? 

I-  Power-Law: Denote the critical temperature by 
cT and introduce the quantity 

  /c ct T T T   and as 
cT T  and 0B  one finds: 

Heat Capacity: C t ,

Magnetisation: m t ,

Susceptibility: t ,

Correlation Length: t ,



















 

 
II- Order Parameter: 

III- Symmetry breaking:  

IV- Scale Invariance:  

V- Universality:  

VI- Critical Dimension: 

----------------------------------------- 

Comment about the difference between the first and second order phase transition: 

 The second kind of PT is continuous in the sense that the state of the body changes 

continuously. Although the symmetry changes discontinuously at the transition point, at 

each instant the body belongs to one of the two phases. In another words, the states of the 

two phases are the same. 

 The first kind of PT, the bodies in two different states are in equilibrium.  

--------------------------------------------------------- 

What is the meaning of the cooperative phenomena? 

 The term cooperative phenomenon is adopted because of the fact that these phenomena 

are caused by interaction of a great number of elementary particles such as electron, 

atoms, etc. These interactions extend over distances which are enormously greater than 

the usual action radii of the elementary particles. 

 Certain subsystems, like spins or atoms, cooperate due to exchange interactions to 

form units below a certain critical point. 

---------------------------------------------------------------------- 
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COOPERATIVE PHENOMENA:  

ISING MODEL* 
 

In this Section, we are discussing various approaches to obtain a mean-field solution to the Ising 

model. In fact, several of the approaches will yield exactly identical results. The reason they are 

presented is that they highlight different ways of carrying out the approximation(s) that are 

commonly referred to as “mean-field approximations”. Essentially, they differ by whether: 

 

1- neglects spin fluctuations around the mean or  

2- Considers spins to behave statistically independently and by which part of the system 

one treats exactly (Bethe-Peierls mean-field theory). 

 

1- Phase transition of the second kind 

Consider ferromagnetic substances, like iron and nickel. Some of the spins of the atoms 

become spontaneously (without any external field) polarized in the same direction, below the 

Curie temperature cT (the critical temperature). This creates a macroscopic magnetic field. As 

temperature is raised, the thermal energy makes it possible for some of the aligned spins to 

flip over. This tends to destroy the initial ordered state. For cT T , the spins get oriented at 

random and the spontaneous magnetization vanishes. As cT  is approached, from both sides, 

the heat capacity of the metal approaches  . The transition from the non–ferromagnetic 

state to the ferromagnetic state is called a phase transition of the second kind. It is associated 

with some kind of change in symmetry of the lattice. For example, in ferromagnetism the 

symmetry of spins is involved. The energy levels of the system are given by 

 

 
,

N N

i ij i j i

i j i

E J h                     
1 1i i i 

        
                 (1) 

           where, on each lattice site i, 

i-  the spin quantum number i  is +1 or –1,  

ii- ijJ  is the interaction energy (the spin-spin couplings),  

iii- Bh H  is the interaction energy associated with the external magnetic field H , and  

iv- B  is the magnetic moment associated with the spin. For spontaneous configuration,

0h  . 

 

The change of symmetry can also occur due to the change in the ordering of the crystal. 

For example, in an alloy AB the atoms may be substituted for one another on a set of given 

lattice sites. Then we can say that a i = +1 for an atom A on the site i, and i  = –1 for an atom 

B on that site. At low temperatures the alloy AB is ordered. Above a transition temperature it 

becomes disordered. 

The difference between the non-ferromagnetic–ferromagnetic transition and the order-

disorder transition is that in the former case ‘up’ and ‘down’ spins can be transformed freely into 

one another, while in the latter case the total number of A type and B type atoms is fixed. 

However similar theoretical results hold in both the cases. 

--------------------------------------------------------------------------------------- 
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*The one-dimensional Ising model: is a chain of N  spins, each spin interaction with its 

neighbor and with external magnetic field B . 
 

 

2- ISING MODEL 
 

The theory of cooperative phenomena is very complicated; especially when all 

interactions are included and three-dimensional systems are considered. 

We assume that in (1) the 
ij acts only between nearest neighbors in the lattice. This is the 

basic assumption of the Ising model. Then (1) is written as 

 
,

N N

i i j i

i j i

E J h                                                                    (2) 

where ,i j  means that the sum is over pairs of nearest neighbors, and the interactions are 

isotropic, that is, all ijJ  have the same value J . For 0J  , the neighboring spins tend to be 

parallel and ferromagnetism is possible. The spontaneous configuration of least energy is the 

completely polarized (ordered) configuration in which all the Ising spins are oriented in the same 

direction. This configuration is attained at T = 0. For 0J  , the neighboring spins tend to be 

antiparallel and antiferromagnetism results. We will assume 0J  . 

In (2) no distinction is made between ,i j and ,j i . The sum over ,i j has / 2nN  

terms, where  

i- n  is the number of nearest neighbors of a site (coordination number of the 

lattice) and  

ii- N the number of spins, for example: 

 

 
 

On a hypercubic lattice in d dimensions has n = 2d nearest neighbors 

 

The thermodynamic quantities require the evaluation of the partition function  

,

1 2 1 2

{ }
( , , )

N N

i j i

i j ii

N N

J h

E
Z N h T e e

   

 

     

 
 
   
 

                                                     (3) 

where 1/
B

k T  and the sum is taken over all the 2N
 possible combinations of the N  spins. 

It is extremely difficult to calculate (3). Several approximate methods have been 

developed for this. The Weiss theory and Bragg-Williams (BW) approximation are the simplest. 

More approximations are elaborate, such as: Fowler-Guggenheim approximation and Kirkwood 

method. 

-------------------------------------------------------------- 
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Example: Calculate the partition function Z for the following configuration: 

 
with the Hamiltonian:  

1 2 2 3 1 2 3( ) ( )H J h           , 

 

Answer: To simplify our problem, let us take 0h  . Try to do the following tree-diagram. 

 
 

The partition function 

   1 2 2 3 1 2 3

1 2 3 1 2 3

( ) , ,{ }

(1,1,1) (1,1, 1) (1, 1,1) ( 1,1,1) (1, 1, 1) ( 1,1, 1) ( 1, 1,1) ( 1, 1, 1)

(1 1) (1 1) ( 1 1) ( 1 1)

,i
J KH

K K K K K K K K

K K K K

Z e e e K J

e e e e e e e e

e e e e

        

     


  

                   

         

   

       

   

  

( 1 1) ( 1 1) (1 1) (1 1)

2 2 2 2

2 2

1 1 1 1

4 2 2

K K K K

K K K K

K K

e e e e

e e e e

e e

         

 



   

       

  

 

This could be simplified to: 

 3 22 coshZ K  

Check 



Prof. Dr. I. Nasser                                                              Phys 430, T-172                                                             8-Apr-18 

Ising_model_1D 

5 

 

 
3- Exact one-dimensional Ising (open ended chain): The one-dimensional Ising 

model consists of a chain of N spins, each spin interacting only with its two nearest 

neighbors. 

 
 

The Hamiltonian takes the form: 

 
1

1 1 2 2 3 1

1

0
N

i i N N

i

H J J J       


 



         

The partition function is given by 

 

1

1

1
2 3 11 2

1 21 1 1 1

,

N

i

J i i
K KK NN

i N

NZ e e e e
  

    

   








   


           (1) 

Where K J . Notice that the final sum, over, gives: 

 1

1

1

2cosh
K NN

N

Ne K
 









                                             (2) 

 

Regardless of whether 1N   is +1 or -1. With this sum done, the sum over 1N  can now be 

evaluated in the same way, then the sum over 2N  , and so on down to 2 , yielding N - 1 factors 

of 2cosh K . The remaining sum over    
1

1 11 1

1

2 cosh 2 2 cosh ,
N NN NK K



  



   
    gives another factor 

of 2. Hence, the partition function becomes 

   
1

2 cosh 2cosh
N NN

NZ K K


                                                               (3) 

where the last approximation is valid when N is large. 

------------------------------------------------------------------------ 

The internal energy and the specific heat: 
The free energy per spin is given by: 

  ln ln 2cosh ,

0 0,ln
tanh( )

, 0

B N B

N

F k T Z Nk T K

K TZ
U NJ K

NJ K T

   

 
     

   

                               (4) 
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which goes to NJ as 0T  and to 0 as T  . Therefore the dipoles must be randomly 

aligned at high temperature (so that half the neighboring pairs are parallel and half are 

antiparallel), but lined up parallel to each other at 0T  (achieving the minimum possible 

energy). 

The heat capacity 
VC  is 

 2 2coshV B

U
C k K K

T


 


                                (5) 

 

The energy and heat capacity are smoothly varying, always finite functions of temperature, 

exhibiting no phase transition.  
 

Notice that,  

 both Z and U for this system are exactly the same as for a two-state paramagnet, if you replace the magnetic 

interaction energy H with the neighbor-neighbor interaction energy J . Here, however, the dipoles like to line 

up with each other, instead of with an external field. 

 while this system does become more ordered (less random) as its temperature decreases, the order sets in 

gradually. The behavior of U as a function of T is perfectly smooth, with no abrupt transition at a nonzero critical 

temperature. Apparently, the one-dimensional Ising model does not behave like a real three-dimensional 

ferromagnet in this crucial respect. Its tendency to magnetize is not great enough, because each dipole has only 

two nearest neighbors. 

 

 

So our next step should be to consider Ising models in higher dimensions. Unfortunately, though, such models are much 

harder to solve. The two-dimensional Ising model on a square lattice was first solved in the 1940s by Lars Onsager. 

Onsager evaluated the exact partition function as N  in closed form, and found that this model does have a critical 

temperature, just like a real ferromagnet. Because Onsager's solution is extremely difficult mathematically, we will not 

attempt to present it in this lecture. In any case, nobody has ever found an exact solution to the three-dimensional Ising 

model. The most fruitful approach from here, therefore, is to give up on exact solutions and rely instead on 

approximations. 

----------------------------------------------------------------- 

Example: Calculate the partition function Z for the following configuration: 

 
with the Hamiltonian:  

1 2 2 3 1 2 3( ) ( )H J h           , 

 

Answer: To simplify our problem, let us take 0h  . Try to do the following tree-diagram. 
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The partition function 

   1 2 2 3 1 2 3

1 2 3 1 2 3

( ) , ,{ }

(1,1,1) (1,1, 1) (1, 1,1) ( 1,1,1) (1, 1, 1) ( 1,1, 1) ( 1, 1,1) ( 1, 1, 1)

(1 1) (1 1) ( 1 1) ( 1 1)

,i
J KH

K K K K K K K K

K K K K

Z e e e K J

e e e e e e e e

e e e e

        

     


  

                   

         

   

       

   

  

( 1 1) ( 1 1) (1 1) (1 1)

2 2 2 2

2 2

1 1 1 1

4 2 2

K K K K

K K K K

K K

e e e e

e e e e

e e

         

 



   

       

  

 

This could be simplified to: 

 3 22 coshZ K  

Check 
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Appendix 
A spin ½ atoms in a uniform magnetic field 

 

Assume N-monatomic Boltzmann ideal gas of spin ½ atoms in a 

uniform magnetic field, in addition to its usual kinetic energy, a 

magnetic energy of 
1    and 

2  per atom, H  , where 

  is the magnetic moment. (It is assumed that the gas is so dilute 

that the interaction of magnetic moments may be neglected.) 

a-  Discuss qualitatively the energy of such an atom?  

Answer: There are two possible states, and they are: 

 

state condition Magnetic energy probability 

(+) H    H     HP Ce 

   

(-) H    H    HP Ce 

   

 

 is lower energy     atom is more likely to be found

 is higher energy    atom is less likely to be found












 

  

b- Calculate the partition function of the system.  

1 2 2cosh( ),               z e e e e
       


       

1 2

1 2

1
tanh( )

2cosh( )

e e
E e e

z

 
  

   





    
 
 
 

 

and the total energy   tanh( )U N E N    .  

In summary: 
Quantity Formula 

Partition function 2cosh( ) 2 cosh ( )N N Nz Z z      

Helmholtz free energy ln( ) ln{2cosh( )}B BF k T Z Nk T      

Entropy  
,

ln 2cosh( ) tanh( )B

V N

F
S Nk

T
  

 
    

 
 

Internal energy 
,

ln
tanh( )

V N

Z
U N H 



 
    

 

 

 

 


