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IDEAL FERMI-DIRAC GASSES  
Fermions: Are particles of half-integer spin that obey Fermi-Dirac statistics. Fermions obey the Pauli exclusion 

principle, which prohibits the occupancy of an available quantum state by more than one particle.  

Ideal fermion gas: Consisting of N non-interacting and indistinguishable fermions in a container of volume V held at 

absolute temperature T. 

Fermi-Dirac distribution: For an ideal FD gas (non-interactions between the indistinguishable particles) of N 

molecules in a volume V, the most probable number of particles with i  energy is: 
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Fermi function, ( )if  , gives the probability that a single particle state 
i  will be occupied by a fermion. In the 

continuum we can have: 
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Clearly, .1)(0  f    no need to be negative, as in BEC, due to the +1 in the denominator, i.e.     . 

----------------------------------------- 

From Wikipedia 

The Fermi energy is a concept in quantum mechanics usually referring to the energy difference between the highest 

and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute 

zero temperature. In a Fermi gas, the lowest occupied state is taken to have zero kinetic energy, whereas in a metal, 

the lowest occupied state is typically taken to mean the bottom of the conduction band. 

Confusingly, the term "Fermi energy" is often being used for referring to a different yet closely related concept, 

the Fermi level (also called electrochemical potential). There are a few key differences between the Fermi level and 

Fermi energy, at least as they are used in here: 

 The Fermi energy is only defined at absolute zero, while the Fermi level is defined for any temperature. 

 The Fermi energy is an energy difference (usually corresponding to a kinetic energy), whereas the Fermi level is 

a total energy level including kinetic energy and potential energy. 

 The Fermi energy can only be defined for non-interacting fermions (where the potential energy or band edge is a 

static, well defined quantity), whereas the Fermi level (the electrochemical potential of an electron) remains well 

defined even in complex interacting systems, at thermodynamic equilibrium. 

Since the Fermi level in a metal at absolute zero is the energy of the highest occupied single particle state, then the 

Fermi energy in a metal is the energy difference between the Fermi level and lowest occupied single-particle state, at 

zero-temperature. 

----------------------------------------- 

 Fermi energy: is often defined as the highest occupied energy level of a material at absolute zero 

temperature. In other words, all electrons in a body occupy energy states at or below that body's Fermi energy 

at 0K. The fermi energy is the difference in energy, mostly kinetic. 

 Chemical potential ( ): May be regarded as the Lagrangian multiplier introduced to satisfy the constraint of 

a fixed number of particles. Also, can be defined as the change in the energy of the system as a result of the 

change in its number of particles, when every other thermodynamical variable that describes the state of the 

system, such as entropy, volume, etc., is kept constant. It has the units of energy/molecule, or otherwise stated, 

for a single species of particles in a grand canonical ensemble, the chemical potential can be defined as the 

change in internal energy gained per particles added to the system when all other thermodynamic variables are 

held constant. 0   for Bosons, and    for Fermions. 

 Density of states: It is the number of microstates (i.e. the number of independent quantum states) of an N 

particle system per unit energy range.  In other words, the density of states, denoted by ( )g E , indicates how 

densely packed quantum states in a particular system. Macroscopically, the density of states can be treated as 

a continuous function of the internal energy of the system. 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Fermion
https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Fermi_gas
https://en.wikipedia.org/wiki/Conduction_band
https://en.wikipedia.org/wiki/Fermi_level
https://en.wikipedia.org/wiki/Electrochemical_potential
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics
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The Fermi function at T = 0                                   ( )f  at three different temperatures in FD statistics 

----------------------------------------------------------------------------- 

Classification according to the chemical potential 

In the expression      

i- If  
1

2
f       (at all temperature). Thus, the probability of finding an electron with 

energy equal to the Fermi-energy in a metal is ½ at any temperature. 

ii- If    0 1f        

iii- If     or 0  ,    
f e

  


 
   and fall off exponentially like Maxwell-Boltzmaan 

distribution. 

---------------------------------------------------------------------------------------- 

Total number of particles as 0T   
 

In the limit of 0T   we have sharp drop and 
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------------------------------------------------------------------------------ 

Classification according to the Temperature 

 
Exclusion principle implies that a FD gas has a large mean energy even at absolute zero, 

0 ( (0))o f     . [Note that: Degenerate here means filled, not as the case of QM] 
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At absolute zero, due to exclusion principle, all the states with 0 ( (0))o f     are completely filled and 

all the states with 
o   are completely empty. 

----------------------------------------------------------------------------- 

Fermi temperature 
fT  in Completely Degenerate Fermi-Gas 

i- Total number of particles: 

3/2
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iii- Fermi temperature 

For convenience, we introduce a Fermi temperature fT  such that o F B fk T   . This can be written as: 
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where /n N V   is the concentration. 

---------------------------------------------------------------------------------------------- 

Example: Metallic potassium has 3 30.86 10 kg/m     and atomic weight of 39 kg/kmoleM  . Find     

i- o  , ii- 
fT   and iii- 

fv .  

Solution:  

i- We will consider one free electron per atom for monovalent atoms. Thus the concentration is: 
26

3 3 28 3(6.02 10 atoms/kmole)
(0.86 10 kg/m ) 1.33 10 atoms/m ,
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aNN N M
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consequently, 
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So, even at room temperature we have to treat the metallic potassium quantum mechanically. 

iii- Use 
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The speed of the electron in metals is 10 times the speed of sound. 

------------------------------------------------------------------------------------------------ 
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Internal energy: 
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Other thermodynamic functions are: 
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Thus at 0 KT   a fermions’ gas exerts a pressure. 

------------------------------------------------------------------------------------------ 

Example: For silver, if we take the concentration 28 3/ 6 10 electron/mn N V    and Fermi energy of 
1810  Jo
 . Calculate the pressure.  

   28 3 18 10 2 52
6 10 electron/m 10  J 2.4 10 N/m 2.4 10 atm.

5
p          

Given this tremendous pressure, we can appreciate the role of the surface potential barrier in keeping the 

electrons from evaporating from the metal. In other words, the Coulomb attraction to the ions 

counterbalances the pressure.  

----------------------------------------------------------------------------------- 
 

 

 

Variation of the chemical potential with T for an ideal FD gas in 

3-region. o and N/V are chosen here to give 
2/3(1.5)o  . The 

region A corresponds to the degenerate quantum FD gas, B to 

slightly degenerate FD gas, and C indicates the region of classical 

gas. 

 

 

 

 

Notes: 

1- ( )T  is positive for temperature below the Fermi temperature and negative for higher temperature. 

2- As the temperature increases above, more and more of the fermions are in the excited states and the 

mean occupancy of the ground state falls below 1/2. In this region, 

                                                 
1 1

(0)
1 2

f
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which implies that 

                                                   0
Bk T


         or       0  . 

AT high temperature the fermion gas approximates the classical ideal gas. In the classical limit: 
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------------------------------------------------------------------------------- 
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Example: for kilo-mole of the fermion 3 He  gas atoms at STP,  

(a) What is the Fermi temperature of the gas?  

 
2 22 342 26 33

27 23

6.626 10 6.023 10

2 1.504 2 4.98 10 1.38 10 1.504 22.4

0.069K 0.07K

F
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mk V 


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    

       

 

 

So, the room temperature is considered as classical temperature.  

 

(b) Calculate  / Bk T and 
/ Bk T

e


 

 

3
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3
2

27 23

2 26
34

2
ln 2
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               

 

/ 53.3 10Bk T
e


    

 

(c) Find the average occupancy  f   of a single particle state that has energy of  3 / 2 Bk T . 

     
7

6/ 1.5 12.7 /

Energy: 1.5

Chemical Potential: 12.7

1 1 1
Average Occupancy 6.8 10
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 
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The average occupancy of single particle states is very small, 76.8 10 (dilute), as in the case of an ideal gas 

obeying the Maxwell-Boltzmann distribution. 

--------------------------------------------------------------------- 

 

Strongly Degenerate Fermi-Gas 
With the help of total number of fermions particle in the form: 

     
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2
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where we used ( )ox T  and x  . 

In the following, it is our main objective is the calculation of ( )T as a function of the absolute 

temperature:  
2

2

( ) 1 ,                 
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o f
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T
T T T
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
 
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------------------------------------------------------------------------------ 
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Mathematical integral: Somerfield’s integral 

The standard integral in the above equation could be solved with the help of Somerfield’s integral, i.e.  
1 2

2
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( 1)
( ) 1 ,

1 6

s
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x s s
f x x x dx

s x
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    
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For the case of the analytic function  ( )

1
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1o
o x x

f x x
e


 


 and 1/ 2s  , we have 

1/ 2 2
3/ 2
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2
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1 3 8o
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o
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dx x

e x






 
   

  
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----------------------------------------------------------------------------------- 

 With the help of , one gets 

 
3/2

2

3/2 22 2
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00
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1 1

3 8 3 81o

B

x x

B
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x k Te

  
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           
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So the total number will be 
22
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3 8
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
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   
 

 Using 3/ 22
 

3
s oN G V , one finds 

22
3/ 2 3/ 2 ( ) 1

8

B
o

k T
T


 



  
    

   

 

 As a first order approximation, we put o B Fk T    in the square bracket to have 

2 2
2 2

3/2 3/2 3/2( ) 1  ( ) 1  
8 8

B
o

o F

k T T
T T

T

 
  



      
           
        

 

 Now, we can calculate ( )T  as a function of o as the following: 

i- Rearrange the above equation: 

1
2

2
3/2 3/2( ) 1

8

B
o

o

k T
T


 





  
    
   

 

ii- Simplify and use the binomial expansion for the square racket, we have 

 
2/3

2 2
2 2

( ) 1 1   
8 12

o o

F F

T T
T

T T

 
  



      
           
         

 

As expected, for  0 KT  the last equation gives ( ) oT  . However, as temperature increases, ( )T is 

lowered slightly. For example as / 0.2FT T  , we find that the chemical potential changes by about 4%. 

----------------------------------------------------------------------------- 
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Example: Calculate ( )T of potassium at 23.0 10  KT   . Note that for potassium, 2.05 eVo   at 

42.3 10  KFT   . 

Answer: 
2 2

2 2 3

4

3.0 10
( ) 1 2.05 1 2.05 0.986 2.02 eV

12 12 2.3 10
o

F

T
T

T

 
 

      
             

        

 

Which is a slight change with respect to 2.05 eVo  . This is because 
FT  is high for potassium and we can 

consider ( ) oT  . 

-------------------------------------------------------------------------- 
H.W. Prove the following: 

      i-  the internal energy 
2

23 5
1

5 12

o

o

F

U

T
U N

T




  
    
   

 

ii- Specific heat 
2 2

, 2

5

6 2
V e o B

V F F

U T T
C U Nk

T T T

     
       

     
 

Comment: Metals have a specific heat capacity of about 3R, the same as for other solids. It was originally 

believed that their free electrons should contribute an additional (3/2)R associated with their three 

translational degrees of freedom. Our last calculation shows that the contribution is negligible. Why is it so 

small? While the kinetic energy of the electrons is much greater than the thermal energy' of electrons in a 

gas, the energy of the electrons changes only slightly with temperature ( /dU dT  is small). Only those 

electrons near the Fermi level can increase their energies as the temperature is raised, and there are precious 

few of them. 

At very low temperatures the picture is different. From the Debye theory, 3

VC T  and so the heat capacity 

of a metal takes the form 

  3

,

free electron Deby's

(Debye)       V V e Vtotal
C C C AT BT     

where the first term is the electronic contribution and the second is associated with the crystal lattice. At 

sufficiently low temperatures, the former can dominate, as indicates in Figure 1. To calculate the values of A 

and B in the equation   3

V total
C AT BT  , one can treat  it as a linear equation, see figure 2. The intercept 

will be A and the slope is B. 

 

Figure 1 Figure 2 

 

--------------------------------------------------------- 
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Example: Calculate the specific heat of potassium at 23.0 10  KT   . Note that for potassium 
42.3 10  KFT   . 

Answer: 
2 2 2

2

, 4

3.0 10  K
4.93 6.44 10  

2 2 2.3 10  K

B
V e B B B

F F

Nk T
C T Nk Nk Nk

T T

       
          

    
 

Which is very small compare to 3 BNk  at room temperature. 

--------------------------------------------------------- 

The following figure is a comparison between the specific heat in the three distribution 

 

 
 

---------------------------------------------------------------------------- 

 

      ii- Entropy     
2

,

0

 
2

T

V e

B

F

C T
S dT Nk

T T

   
    

  
  

            So, 0S   as 0T  . 

---------------------------------------------------------------------- 

iii- Helmholtz  
2

43

5 4
B F

F

T
F U TS Nk T

T

  
      
   

 

---------------------------------------------------------- 
iv- Pressure 

2
4

,

2 5 2
1

5 12 3

B F

T N F

Nk TF T U
P

V V T V

   
        

     

 

--------------------------------------------------------------------- 
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