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IDEAL FERMI-DIRAC GASSES
Fermions: Are particles of half-integer spin that obey Fermi-Dirac statistics. Fermions obey the Pauli exclusion
principle, which prohibits the occupancy of an available quantum state by more than one particle.
Ideal fermion gas: Consisting of N non-interacting and indistinguishable fermions in a container of volume V held at
absolute temperature T.
Fermi-Dirac_distribution: For an ideal FD gas (non-interactions between the indistinguishable particles) of N

molecules in a volume V, the most probable number of particles with &, energy is:
n;’ 1
f (5i):E:eﬁ<ai—m+l
Fermi function, f(s;), gives the probability that a single particle state & will be occupied by a fermion. In the

continuum we can have;

N 1 B 3
(@=3 G VhEw

Clearly, 0 < f (&) <1. u no need to be negative, as in BEC, due to the +1 in the denominator, i.e. —c0 < g < 0.

From Wikipedia

The Fermi energy is a concept in guantum mechanics usually referring to the energy difference between the highest
and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute
zero temperature. In a Fermi gas, the lowest occupied state is taken to have zero Kinetic energy, whereas in a metal,
the lowest occupied state is typically taken to mean the bottom of the conduction band.

Confusingly, the term "Fermi energy" is often being used for referring to a different yet closely related concept,
the Fermi level (also called electrochemical potential). There are a few key differences between the Fermi level and
Fermi energy, at least as they are used in here:

. The Fermi energy is only defined at absolute zero, while the Fermi level is defined for any temperature.

. The Fermi energy is an energy difference (usually corresponding to a kinetic energy), whereas the Fermi level is
a total energy level including kinetic energy and potential energy.

. The Fermi energy can only be defined for non-interacting fermions (where the potential energy or band edge is a
static, well defined quantity), whereas the Fermi level (the electrochemical potential of an electron) remains well
defined even in complex interacting systems, at thermodynamic equilibrium.

Since the Fermi level in a metal at absolute zero is the energy of the highest occupied single particle state, then the
Fermi energy in a metal is the energy difference between the Fermi level and lowest occupied single-particle state, at
zero-temperature.

» Fermi energy: is often defined as the highest occupied energy level of a material at absolute zero
temperature. In other words, all electrons in a body occupy energy states at or below that body's Fermi energy
at OK. The fermi energy is the difference in energy, mostly kinetic.

» Chemical potential (2 ): May be regarded as the Lagrangian multiplier introduced to satisfy the constraint of
a fixed number of particles. Also, can be defined as the change in the energy of the system as a result of the
change in its number of particles, when every other thermodynamical variable that describes the state of the
system, such as entropy, volume, etc., is kept constant. It has the units of energy/molecule, or otherwise stated,
for a single species of particles in a grand canonical ensemble, the chemical potential can be defined as the
change in internal energy gained per particles added to the system when all other thermodynamic variables are
held constant. —oo < g < 0 for Bosons, and —oo < 2 < cofor Fermions.

> Density of states: It is the number of microstates (i.e. the number of independent quantum states) of an N
particle system per unit energy range. In other words, the density of states, denoted by g(E), indicates how
densely packed quantum states in a particular system. Macroscopically, the density of states can be treated as
a continuous function of the internal energy of the system.
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The Fermi functionat T =0 f () at three different temperatures in FD statistics

Classification according to the chemical potential
In the expression S (&—u)

i-If e=pu = f (g)=% (at all temperature). Thus, the probability of finding an electron with

energy equal to the Fermi-energy in a metal is % at any temperature.

i- If Be-u)<<0 = f(g)=1

ii-If u<<p or u=0, = f(&)=e”“* and fall off exponentially like Maxwell-Boltzmaan
distribution.

Total number of particlesas T —0

In the limit of T — 0 we have sharp drop and

Hy
jg@mg T =0
0

1 e<ypy,
f(e)= = N =
0 e>u

Tg(g)f (e)de T #0

Where
2m 3/2
g(g):gsx27rV(Fj Je, g, =2s+1
2m 3/2
:VGS\/E ,  for electrons, G, =4r (F)

Classification according to the Temperature

Exclusion principle implies that a FD gas has a large mean energy even at absolute zero,
0<e<u (=& (0). [Note that: Degenerate here means filled, not as the case of QM]

T=0 4>0 &<y, Verylowtemperature = Completely degenerate

T T <<T, #(T)>0 Low temperature degenerate
| T =T, u(T)~0 Intermed iate temperature  Slightly degenerate
T>>T, 1(T)<0 High temperature Classical limit
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At absolute zero, due to exclusion principle, all the states with 0< & < g (= ¢, (0)) are completely filled and
all the states with &> x4 are completely empty.

Fermi temperature T, in Completely Degenerate Fermi-Gas
i- Total number of particles:
Ho Ho 2V
N = j g(e) f(e)de =VG, j Je de =?GS%3’2
0 0

ii- Fermi energy
N_ﬂG » _ _h_2 3N 2/3
g ot %= oml8zv

iii- Fermi temperature
For convenience, we introduce a Fermi temperature T, such that 4, =& =kT, . This can be written as:

. e h? iﬂ 2/3: h2 in 2/3
"k, 2mk, |87 V 2mk,, \ 87

where n=N/V is the concentration.

Example: Metallic potassium has p =0.86x10°kg/m® and atomic weight of M =39 kg/kmole . Find
i- g, ,0i- T, andiii- v, .
Solution:
i- We will consider one free electron per atom for monovalent atoms. Thus the concentration is:
26
_ g _ %( M ] _N, _(6.02x10" atoms/kmole) (0.86x10°

—2 kg/m?) =1.33x10%® atoms/m?,
consequently,

n

\Y

M P 39 kg/kmole

2 2/3 hc 2 2/3 7 2 2/3
i J_(gﬁ] _( )2 (Eﬂj _(124x107 ev.m) (§x1.33x1028 ator;wsj 205 eV
8m\ 7V 8mc? 7 V 8(0.511x10°eV) \ 7z m
ii-
T, =te_ 2098V ;79,100 K

Ke  8.617x10° ell/
So, even at room temperature we have to treat the metallic potassium quantum mechanically.
iii- Use
K P = p;=2my
°2m ! °
2u 2uc?  2(2.056V)x(3.0x10° mis)

- = . =7.22 x10" m?/s?
m  mc (0.511><1o ev)

= Vi=

= Vv, =85x10° m/s
The speed of the electron in metals is 10 times the speed of sound.
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Internal energy:
iy 3/2 u, 3/2
Uozjeg(s)f(g)dg:er(zh—TJ Ism dg=8LV[2_m] ,u05/2=§N,u0

0 0
| —

Other thermodynamic functions are:
S, =0,

Qo =-PV :Uo _So_:uoN :_éﬂON’

P=——2= E E = z n n = concentration
v 5'ly )5 M

Thusat T =0 K a fermions’ gas exerts a pressure.

Example: For silver, if we take the concentration n=N/V =6x10electron/m®> and Fermi energy of
1, =107 J. Calculate the pressure.

p= % % (6 ><1028electron/m3) X (10‘18 J) ~2.4%x10"° N/m* = 2.4x10° atm.

Given this tremendous pressure, we can appreciate the role of the surface potential barrier in keeping the
electrons from evaporating from the metal. In other words, the Coulomb attraction to the ions
counterbalances the pressure.

+2 t ¥
of Mei
Variation of the chemical potential with T for an ideal FD gas in ) : C—e
3-region. g and N/V are chosen here to give z =(1.5)*%. The ' -2 :
region A corresponds to the degenerate quantum FD gas, B to (T “a- A !
slightly degenerate FD gas, and C indicates the region of classical M )_ i : 8
gas. "
-8~ |
[
-10 ] ] 1 1 i
0 1 2 3
Notes: T

1-  u(T) is positive for temperature below the Fermi temperature and negative for higher temperature.

2- As the temperature increases above, more and more of the fermions are in the excited states and the
mean occupancy of the ground state falls below 1/2. In this region,

1 1
f (0)= <=
©) e P +1 2

which implies that

H <0 or 1<0.

kgT
AT high temperature the fermion gas approximates the classical ideal gas. In the classical limit:

oU 272mkT )2 Vv
=l — | =-kgTIn(z)=—k;T In —
g (ava,s T in(z) =k, {( h? j N}
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Example: for kilo-mole of the fermion *He gas atoms at STP,
(a) What is the Fermi temperature of the gas?

o oN VA (6:626x10)° 6.023x10% \/?
P 2amkg \1.504V ) 27x4.98x107 x1.38x10% | 1.504x 22.4
=0.069K ~ 0.07K
So, the room temperature is considered as classical temperature.
(b) Calculate 4 /k,T and € * kel
Y2 2zmk, T 2y
—_— = In 2 - —_—
KgT h N
_ 27 x4.98x107%" x1.38x10%# x 273 " 22.4
=—In| 2 ' ' > — |=—-12.7
(6.626><10_34) 6.023x10

— e “/*T =3.3x10°

(c) Find the average occupancy f (8) of a single particle state that has energy of (3/ 2) KgT
Energy: &=1.5k,T
Chemical Potential: x=-12.7k,T
1 1 1

_ _ _ _ -7
Average Occupancy f (&)= T ]~ SRR ] = 169X 10" 6.8x10

The average occupancy of single particle states is very small, 6.8x107 (dilute), as in the case of an ideal gas
obeying the Maxwell-Boltzmann distribution.

Strongly Degenerate Fermi-Gas
With the help of total number of fermions particle in the form:

N = jg(g)f(g)dg GVT ﬁ*/_dg

3/2OO
a7 GV (kaT) !

where we used x, = Su(T) and x = fe.
In the following, it is our main objective is the calculation of (T ) as a function of the absolute

temperature:
(T ’
= 1-—| — | |, T <<T
/u(T) ﬂo{ 12 -l-f f
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Mathematical integral: Somerfield’s integral
The standard integral in the above equation could be solved with the help of Somerfield’s integral, i.e.

o) s+1 2
If (X =X, )X *dx ~Xo 1+7[—S(S erl)+--- :
) s+1 6 X

0

1
For the case of the analytic function f (X —X_) = =R and s=1/2, we have

© 1/2 2
J(Xi(x—)dx:zxg’z 1+7r—2+~-
e +1 3 8X

> Using N :%Gsv;zf’z , one finds

2
ﬂ03/2 :ﬂslz(r)l:1+”_2[i<‘3_Tj _|_:|
8\ u

> As afirst order approximation, we put =z, =k;T: in the square bracket to have

2 2 2 2
13 = 1 ¥2(T) 1+ 7% ke b | = ¥2(T) 1+ % I 4.
8 Hy 8 TF

> Now, we can calculate x(T ) as a function of 4 as the following:
-1

0

2 2
i- Rearrange the above equation: x**(T) = 1 {1+%[k8_-rj +]

ii- Simplify and use the binomial expansion for the square racket, we have

(T)— 1+7T_2 L 2+... 72/3~ 1_72._2 l 2_|_...
()= 14| - w1 T

As expected, for T =0 Kthe last equation gives x(T) = . However, as temperature increases, u(T)is
lowered slightly. For example as T /T. =0.2, we find that the chemical potential changes by about 4%.
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Example: Calculate (T ) of potassium at T =3.0x10° K. Note that for potassium, x4, =2.05eV at
T, =2.3x10" K.
Answer:

2 2 2 32
,u(T),uolil—f—z{le +"12'05{1‘71T_2(2'2X184j +..}2.05><0.986z2.02 eV
E O X

Which is a slight change with respect to 4, =2.05 eV . This is because T. is high for potassium and we can
consider u(T )=y, .

H.W. Prove the following:
i- the internal energy
2 2
U ng,Uo 1+5L l —
5 12 (T,
—

2 2
C\,e:(a—u) :SLUO lz +om Nk, LN
ot ), "6 T 2 e T

Comment: Metals have a specific heat capacity of about 3R, the same as for other solids. It was originally
believed that their free electrons should contribute an additional (3/2)R associated with their three
translational degrees of freedom. Our last calculation shows that the contribution is negligible. Why is it so
small? While the Kkinetic energy of the electrons is much greater than the thermal energy' of electrons in a
gas, the energy of the electrons changes only slightly with temperature (dU /dT is small). Only those
electrons near the Fermi level can increase their energies as the temperature is raised, and there are precious
few of them.

At very low temperatures the picture is different. From the Debye theory, C, oc T* and so the heat capacity
of a metal takes the form

ii- Specific heat

(Cy)pe =Cve+C, (Debye)= AT +BT®

free electron Deby's

where the first term is the electronic contribution and the second is associated with the crystal lattice. At
sufficiently low temperatures, the former can dominate, as indicates in Figure 1. To calculate the values of A

and B in the equation (C, )total = AT +BT?, one can treat it as a linear equation, see figure 2. The intercept
will be A and the slope is B.

heat
capacity

v

Figure 19.9  Skeich of the heat capacity of a metal as a 2
function of temperature showing the electronic and lattice T~

contributions, ;
Figure 1 Figure 2
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Example: Calculate the specific heat of potassium at T =3.0x10* K. Note that for potassium
T, =2.3x10" K.

Answer:

2 2 2

Coo= | Mo Jp _ [ T Nk, = 2.93x] 2020 Ky 6.4ax102 N,
’ 2\ T, 2 |\ T, 2.3x10" K

Which is very small compare to 3 Nk, at room temperature.

2
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ii- Entropy

iv- Pressure
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Appendix 1 to IV.10: Sommerfeld’s expansion
Statistical Physics
Lecture J. Fabian

Consider integral,

_ [T ele)
I(p) = /0 de A 11 (1)
where ¢(e) is some well behaved function. Let us introduce a new variable x,
r=03e—pn), e=p+kgTx. (2)

The integral transforms to

o0 (1 : T 0 o1t o oo ol : T
I(y) = ksT f dg S0 KT g f dr P KT |y 7 ] dr PUTRET) )
*#f-'fBT € +1 7,&/"657‘ € +1 0 € +1

Let us work little hit on the first integral on the right,

0 kpT
ol + kpTx wiks (i — knTr
/ gp SRl / gy P kaTe) n
—p/kpT et + 1 0 e + 1
1 1 1 © wlksT o — kpTx)
= |l—=1-—|=— 1z p(z) — Iy —————. 5
| (-.r_i_l‘ }‘:BTfD (7&—/(7) ]D aa T+ 1 (J)
We have introduced new variable z, by
z=p— kT, (6)
in the first integral on the right. Our original integral now reads,
K < plp+kpTe) wEsT o — kpTa)
- A r - e \,/
I(p) = fo dz (=) + L.BTfO dzx —mrl L‘BT[D da BT (7)
Thus far we have made no approximation. In the following, we make two: (i) In the degenerate limit, we have
I =y ol
" =1, 8
kT kT (8)

so that we can extend the integration in the last term of Eq. 7 to infinity; note that the integrand of this term
decreases rapidly with inereasing »—this is why the upper limit of that integral is irrelevant. We cannot do the same
with the first term, for example. We obtain:

iz o0
() :/ dz p(=) +1\'BT] dx
0 0

(ii) As a second approximation, we expand p(p = kgTx) in Taylor series about kgTx = 0, again for the reason that
the integrand decreases exponentially with increasing = as well as that kpT < pu:

dp(p)
dp

=11 [o(p + kpTx) — o(p — kgT)] . o)

b ) + TR zszT.rdflﬂJr .. (10)

(i + kpTx) — p(u — kpTx) = p() + kpTx du I

Substituting to our integral, Eq. 11, we get

(11)



