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BOSE-EINSTEIN CONDENSATION  (16.3) 
 

In this lecture we shall be concerned with a gas of noninteracting particles (atoms or molecules) of 

comparatively large mass such that quantum effects only become important at very low temperatures. The 

particles are assumed to comprise an ideal Bose-Einstein gas. The discussion is relevant to 4 He , which 

undergoes a remarkable phase transition known as Bose-Einstein condensation. This phenomenon is intimately 

related to the superfluidity of liquid helium at low temperatures. 

 

Bosons: Are particles of integral spin that obey Bose-Einstein statistics. There is no limit to the number of 

bosons that can occupy any single particle state. 

Ideal boson gas: Consisting of N non-interacting and indistinguishable bosons in a container of volume V held 

at absolute temperature T. 

Bose-Einstein distribution: For an ideal BE gas (non-interactions between the indistinguishable particles) of N 

particles in a volume V, the most probable number of particles with energy is: 

1

1

)(

)(
)(

)(

*









ieg

N
f

i

i
i  

and the continuum is: 

1

1

)(

)(
)(

)( 







eg

N
f  

,)()()(
00

 


 dgfdNN 2/12/3

3

24
)( 


 m

h

V
g   

For 4 He  

 at STP (standard temperature and pressure) 236.02 10  molecules/molAN N   , 

27 274 1.66 10 6.65 10  kgm        and 3 322.4 10  m /moleV   , one gets: 
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Note: 

1- B.E. condensation can occur only when the particle number is conserved. For example, photon do not 

condense, they have a simpler alternative, namely, to disappear into the vacuum. 

2- At  T < Tc the system may be looked upon as a mixture of two ''phases'' 

i.e. the de Broglie wave length is of the order of the average particle distance. The wave function overlap and so 

the quantum effects are important. 

Critical point: The temperature and pressure at which two phases of a substance in equilibrium with each other 

become identical, forming one phase. 
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Ideal Bose-Einstein Gas 
 Start with the maximum probable distribution ( )if  , where: 

*
1

( )  ,                                                       (1)
1i

i
i

i

N
f

g e
  

  


   


 

ig  is the degeneracy of the state and  is the chemical potential. With the conservation of particles, it is 

required that: 
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The summation in Eqn. (2) is sum over (energy) levels. Supposing we do a sum over states, then it is necessary 

that we give a statistical weight to each state. Since there is no restriction on the number of particles occupying 

a particular state, each state can be given a statistical weight of 1. The condition 1e   , or 0  , is required 

to have positive numbers of particles.  
--------------------------------------------------------------------------------- 

The maximum value of  . As the total number of particles in the ground state, i.e. 0o  , is 
oN N  we have 
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As N  , we find 0  , or 1e   

----------------------------------------------------------------------------------- 
The number of particles in the excited states 
Mathematical Description: 
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, with the spin factor = 1. Eqn (3) are often found expressions for a Bose 

ideal gas in texts. 
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where x  , and 
2 B
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
 is the De-Broglie wavelength. 
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 By incorporating the density of states ( )g  , no weight is given to 0 state (zero 

momentum state) as the kinetic energy of the particles goes to zero in this energy level. In quantum mechanical 

treatment this is incorrect as the particles essentially occupy the lower energy states in the low temperature and 

high density limit where quantum effects become dominant. Hence it is necessary that we take this term out of 

the summation (Eqn. 2) before carrying out the integration. 

 For the density of states we have to revise it in the form: 
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Then we have for the total number of particles: 
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where eN refers to the number of particles in the excited states and 0N  is the number of particles in the 0  

state.  

 
Schematic diagram of the distribution function for the particles of an ideal BE gas. 

 

 When the temperature is very high (classical limit), then e  << 1 and   is a –ve quantity. 

Under such conditions, the term  
1

1e 


  is well behaved and does not give a significant contribution to N. In 

other words 0N << N and eN  is large. Hence most particles are in the excited states and not in the 0  state. 

But as the temperature approaches 0 K, 1e   and the term  
1

1e 


  diverges as 1e   at T = 0 K. The 

contribution from singularity terms becomes more significant under these conditions. Here 0N  becomes much 

more significant compared to eN . Thus the 0  level gets densely populated. This is what is called Bose-

Einstein condensation. 
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Dividing Eq. 6 by Eq. 7 gives the maximum number of particles occupying states above the ground state is 
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and the rest of the particles 
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must condense into the ground state. This rapid increase in the population of the ground state below cT  is called 

Bose-Einstein condensation. 

 
----------------------------------------------------------------------- 

Example: For 4 He  calculate BT  at 1 atm. 

Answer: Use 236.02 10  molecules/molAN N   , 27 274 1.66 10 6.65 10  kgm       , and 
3 322.4 10  m /moleV   , then 
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It is small compared to the experimental value 4.21 K .  

-------------------------------------------------------------------------------- 

NOTES: 

1. B.E. condensation can occur only when the particle number is conserved. For example, photon do not 

condense, they have a simpler alternative, namely, to disappear into the vacuum. 

2. At cT T the system may be looked upon as a mixture of two “phases” 

(a) A gaseous phase [ eN ], particles distributed over the excited states ( 0  ), and 

(b) A condensed phase, consisting of [ oN ] particles accumulated in the ground state ( 0  ). 
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18.4 Properties of a boson gas 
  

The bosons in the ground state do not contribute to the internal energy nor to the heat capacity. The first term in 

the sum i i

i

N   is 0 0N  . For 
BT T , 0N  may be large but 

0  = 0, and for 
BT T , 0N  = 0 in any case.  

 

Energy 
For temperatures above the Bose temperature, all the bosons are in excited states and we may expect the 

internal energy to approach (3 / 2) BNk T as the temperature is increased, i.e. 

At high temperature  
BT T  

3

2
BU Nk T                            

BT T  

 

 Below the Bose temperature the number of bosons in the excited states is 
3/2( / )ex BN N T T . As a 

first approximation, we assume that each of these bosons will have a thermal energy of the order of kT. Thus 
3/2

B B

B

T
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T


 
  
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indicating that U
 varies as 

5/2T below the Bose temperature. A more nearly exact result is obtained by noting 

that the internal energy of the system is given by 
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Use x  , 1e  , we have 
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not greatly different from our approximation. 

In Summary:    
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Specific heat 
It is a simple matter now to obtain the heat capacity: 
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At cT T  , the values 1.962V V BC C Nk    
------------------------------------------------------------------------------------- 
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The entropy shows sudden drop for BT T . In ( )S T , 0S   at  0T  , accordance with the third law of 

thermodynamics.  This means that for the condensed phase (which exist at 0T  ) the entropy is zero, that is, 

all the particles are in one state. 

------------------------------------------------------------------------------------------------ 

Pressure 

For ideal gases in three dimensions, the thermodynamic relation
2

3
P u  is hold, independently of the statistics. 

Therefore using 
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Note that: For BT T , P  is independent on V and a function of T only, as for a condensing gas. The pressure of 

the gas does not depend on the volume in a BEC regime so that the compressibility of the BEC phase is infinite. 

This pathological feature is remedied by the inclusion of the two-body interactions. The following figure shows 

the equation of state of the ideal Bose gas. 

 
 



Prof. Dr. I. Nasser                                       Phys430, T152                                             19-Mar-18 

Bose_Einstein_condensation 

 

7 

 

 
Pressure of the ideal Bose gas vs the specific volume /v V N  for two temperatures 1 2T T . 

 

 

This is due to the fact that, when compressing a degenerate Bose gas, we just force more particles to occupy the 

ground state. The particles in the ground state do not contribute to pressure – except of the zero-motion 

oscillations, they are at rest. 
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An experimental evidence for Bose–Einstein condensation came from the ),( TCV relationship of 4 He . Phase 

transition of 4 He  was found to occur at 2.19 K. When the mass, 
27 274 1.66 10 6.65 10  kgm        and 

volume, 
3

V 27.6 cm /mole  the transition temperature it was found to be 3.13. The two numbers were not 

drastically different and the similarity between the ( VC  vs. T) plot of an ideal Bose gas and that of 4 He was 

enough evidence to prove that the phase transition in 4 He  is actually Bose-Einstein condensation. 
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Struck by the shape of this graph, the phase transition was given the name  transition and the transition point was called 

 transition point. 

There are several applications of BEC in actual research.  

1- One interesting application is the matter waves produced coherently by BEC, or atom laser.  The beam 

is made of atomic waves and has special interest in any experiment that uses an atomic beam since the 

coherency can improve the precision of some measurements such as in atomic clocks.  

2- Another interesting experiment is the production of a vortex lattices in the BEC media. This is especially 

interesting since the superfluidity property do not allow a vortex formation when the media is “stirring 

up”. However, when one spin the trap of a dilute gas BEC the formation of several “local” vortices 

appear. The combination of this technique with a optical lattice formation tends to be promising in order 

to study also superconductors. 
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