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STATISTICAL MECHANICS OF DIATOMIC GASES

1- For monatomic gas, whose molecules have three degrees of freedom of translatory motion, the internal

energy and the specific heat of one mole of gas are u =§RT, and ¢, = (2—_['1_) = g R, respectively.
\
The energy does not depend upon the volume.
2- A molecule is a stable compound of two like or different atoms.
3- The nature of forces that leads to the formation of a molecule from isolated atoms is treated in quantum
mechanics.
4- The energy of the molecule is made up of:
i. The translation Kinetic energy of its center of mass Etrans.
ii. Energy of excitation of the atomic electrons in the molecule Ee.
iii. Energy of vibration of the nuclei along the axis joining them, Evi», and
iv. The rotational kinetic energy due to the rotational motion of the atoms about the center of mass of
the molecule, Erot. Thus
E = Etrans + Ee + Erot + Evib

The translational motion of a diatomic molecule is not Vibrationsl levels  Rotational levels
quantized. All the other kinds of internal motion of the ty= 0+ D E- fy )
molecule are quantized, i.e. Ee, Erot, and Evip assume a . !
discrete series of values. o 4 <)

Approximations:
I-  Assume that the three kind of internal motion of
molecule are independent of one another.
[1-  The influence of vibrational motion on rotation can ‘
be neglected. i.e. the moments of inertial of $ho 2 :J
molecules stay constant. ’

- AE, =1eV ~10°K i.e. very high temperature is

required to produce a substantial number of
molecules in excited electronic states. This is why

w1

we are neglecting the contribution of the electronic e 9 - =)
states. PR

I\VV- Because of AEvib ~ 10’3 eV to 10*1 eV, AE ot © 10’4 Fig. 8.13 Vibrational excitation of diatomic molecules leads to the excitation of many

rotational levels corresponding to each vibrational level, thus resulting in the fine structure

then it is easy to find a few vibrational and rotation ~ °f the vibrational levels.
states at room temperature.

Vibrational modes:

For an oscillator with mass m and angular frequency @ =27 f , the Hamiltonian in three dimensions is:

2
1
H(p,q) = Zp_m +§mw2q2

Kinetic energy Potential energy

and the vibrational energy level is given by:
5=+ ho, =012

Note That:
e The energies are equally spaced, i.e. Ag; =haw,

e The ground state has “zero point” energy equal to Zw/2,
e The states are non-degenerate, i.e. gj=1 for all j.

1
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. . . . N 1
e The partition function: (use the geometric series summation» e ™ = - )
V=0 —e
S > e’ 1 : 0, ho
_ P&, _ p-a -v(2a) __ _ _ -1 _ b _
ZVib - - € =€ ~ € - 1_e72a - ea _efa - (ZSInh a) y a= Z\ii_ y gvib _k_

B
Note that: the value of 6, (has a units of temperature K) separates between the quantum and classical
regions.

Example: If you know that 7w =0.29 eV forN,, then [Note: 1eV =1.6x10"° J, k, =1.38x107% %]

_ ho _0.29x1.6x10™ J
Ke  1.38x107%

So, any temperature less than or equal 3362 K will be in quantum region, and any temperature greater than
3362 K will be in classical region.

H.W. Calculate 6, for H,,0,, and Cl,.

O, =3362 K.

e We shall also be concerned with the occupation numbers, or with P =N, / N, the fraction of the
total number of particles with energy ¢;. The Boltzmann distribution for g; =1is

N. hej
Pj —_ € — e*ﬂgjea (1_e—2a) _ (1_e—2a)efﬂaj+a
N Zvib
The exponent of the term outside the parentheses can be written
: KgT 27k, T 2kgT KT T

Thus
N, G
—_J_
P; _W_(l—e T T
A sketch of the last equation for two temperatures shows that the lower the temperature, the more rapidly the

occupation numbers decrease with j (Figure 15.1). At higher temperatures, more particles populate the
higher energy levels.
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Figure 15.1 Fractional occupation numbers for quantized linear oscillators with
(a) T = 6/2,and (b) T = 26.

e The single particle partition function leads to a heat capacity of Figure 153 Variaion vih
2 gl ety of sty f
C —[aU_Vibl =Nk [e\nbj L 1 Iia
vib — - B 2 )
ol A n T (e G IT _1)

Cy

This heat capacity decays exponentially as T <<, and tends to zero as
T —>0,andtendsto R permoleas T >>§,, ,
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Quantity Formula T>50 T 5o
Partition _ 5 N o N 0? KgT
function Zyip = 2o = (2sinh a) )"
ho
Helmholtz | F =k T InZ, =Nk.T In(2sinha) 0? F =Nk,T In(8hw)
free energy
Entropy 0 — —
S :_(aFl =NKkg [acotha—ln(asinh a)] S =Nk, [1 In(ﬂhw)]
or N
Internal 0
energy Uyip = - oI 2y =N Aw 1+71 ZXEXNKBT:nRT
vib op ) 2 2
V,N
N(oIn(z)
Pressure P=—| —~2 Nk.T /V =nRT /V
ﬂ( oV l N o /
c. :(auvib] :(‘wvibj (aﬂj
Vibrational | "® NN B N N\IT NN 2 Nk, =nR
heat s o T il b | b T &
capacity K byib e vib T
Mo ) e 2
(e vib _1)
Substance 0, =12 W) | 5 -1 (K
5 rot 2|kB
H, 6140 85.4
0, 2239 2.1
N, 3362 2.9
Cl, 810 0.0347

Example: If you know that 2@ =0.29 eV for N,, calculate C,;, per mole at T =1000 K . [Note: any

temperature less than 3362 K, will be in quantum region, k, =1.38x107 %]

Answer: From the above table, it was found that 1000 K < 6, (N,). Consequently, 1000 K will be in the

3362

quantum region. Then, use a=—— =3.362
1000

We can have

HVi 2 eﬁvib/T
Coip = R[Tbj W

=8.31a’

a

e

(" 1)

7=

=3.49J mole™* K™

This is in excellent agreement with the experimental value, 3.43J mole™ K™, and away from the classical
value c,;, =R =8.314 JK'mol .
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Rotational modes:

Classically, the kinetic energy of rotation is: 4
2 2 1 xis of rotation
KE=Z1p =@ L
2 21 21

Using the relation mr, =m,r,, r,=r+r, , then

the moment of inertia about an axis through the
center of mass of a diatomic molecule is:

m,m
| =mr’ +m,r) = ur}, p=——t
m,+m,
Fig. 8.8 Rotational motion of a diatomic molecule about an axis through the center
. . . of mass.
The rotational energy level is given by:
L 1 +1
gr:—zghz I=Oll’2!.'.’
21 21
Where, | = ur?, p is the reduced mass, Iy is the equilibrium distance between the nuclei, and | is the

moment of inertia of the molecule relative to a perpendicular axis passing through the center of mass and |
determining the angular momentum of the molecule relative to the center of mass with its degeneracy

g, =021+1).
The partition function:

Zo =2 0877 =) (21 +De ™ =) (21 +1e DT
| | 1

A- Low temperatures, T <<§

rot ?

2
gmt = i
21k g

H . - Fi 154 Varation with
we just take the first two terms in the :cﬁ,“;f:atuﬁnfmi;a;u{
MP&CI ¥ ol an asscmbly
series leading to , g otators
Zoy = 0, (21 +1)e ™ =14+ 37T,
|

Mk e

U, =6Nk6, 82T,

rot

2
Cv,rot — 3NkB (zirot ] e—26’rot/T

B- High temperatures: At high temperature, T >> 6, ., a very large number of rotational states are

rot !

occupied. Also, the spacing of the rotational levels becomes very small compared with the thermal
energy, and we may compute zrot by replacing the summation by integration. We also substitute 2| for
21+1 and I? for I(I+1). Then

z T

rot, classical

zJ.dl(zl +1)e—|(|+l)9,m/T zJZIG_IzgrOt/TdI —
0 0 rot

which leads to internal energy of Nk,T and a heat capacity of R per mole due to rotations.

Example: Calculate 8, for the diatomic nitrogen. [M =14.008 amu]
14.008

6.023x10%°
the reduced mass is =m/2=1.163x10 kg, and the moment of inertia of a molecule is

| = ur* =1.163x10% kg x(L0976x107"°)" m? =14x10* kg.m?,

Answer: The mass of a single nitrogen atom is m = =2.325x107* kg,
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2 6.625x10°%)° J%?2
h ( ) ~288K

J

ot = 2 =
87°IKs 872, 14x10*kg.m? x1.38x10°%
molecule.K

Example: Calculate the partition function for the hydrogen molecule at 300 K, given that the moment of
inertia for molecule is | =6.29x10™* kg.m?.

Answer:
a) Using the classical expression: z i = ;— _ 300 , Where
rot rot
h? (6.625x10°° )" J%?
o e ] =64.03 K
7T e 87?x6.29x10*®kg.m?*x1.38x10% —~
molecule.K

Note that 64.03 K <85.4 K, so we have to treat it using the quantum expression. But, we are going to treat
it classically also to see the difference.
i- Using the classical expression:

z rot ,classical = % = 469

ii- Using the quantum expression z , = > (21 +1)e """ one finds:
1=0

7 = Z (2| +l)e =1 (1+1)0,o IT — 1000 + 33 —2x64.03/300 + \L.-ﬁ —6x64.03/300 +ee
1=0

=1.000+1.958+1.389+0.540+0.126 +---
=5.001

Comments:
1- The contribution due to each rotational level goes through a maximum at | =1 and then decay
rapidly, becoming negligible by | = 6.
2- This decreasing is mainly due to the factor —I (I +1) in the exponent.
3- The difference between the classical and quantum results is due replacing a summation by an integral
when quantization is still significant at this temperature.

15.6 Use the data of Table 15.1 to determine r,, the equilibrium distance between the nuclei, for

(a) an H2 molecule;
(b) a CO molecule.

Answer:

2
2] m,m,
m, +m,

rot :m

h? h
Then, 8 , =———, and I, =

“ourkk Y f2uke,

, where | = yroz, and g is the reduced mass, u =

h

m
a) ForH, pu=—,s01, =
2 Jmk,
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1.054x10°% J-s

Then, Iy, =
° Jamu)(1.66x107 kg/amu)(1.38x102 J/K)(85.4 K)
ro.=7.54 x10™ m = 0.754 A
b) ForCO, u= mm, _ (2amu)(A6amu) _ 6.857 amu
m +m, 12amu-+16amu
Then p o= T _ 1.054x107* J-s
0 J2uk6,,  \[2(6.857 amu)(L.66x1077 kglamu)(1.38x10~2 J/K)(2.8 K)
r=112x10"m=112 A
Summary

The single particle partition function

E = Etrans + Ee + Erot
E = Etrans + Ee >> Evib >> Erot

32
L= Ztr X Ze X Zrot X Zvib :V Lzﬁir?j X Ze X Zrot X Zvib
CV = CV,tr +Cv,rot +CV,vib
2 O /T
:3(1 Nk8j+2(1 NkBj+2NkB l(ﬁj S
2 2 2\ T (eevib/T _1)

Note: RegardingC,, C, will be neglected at low temperature, because the energy difference

+ Evib

E. >E, >E,.

The total heat capacity

C, =C, i +C, ot +C, vib 4
2 T —
3 4, g -
= 2Nk +Nk, +Nk, | 22 |~ 3 A
2 T ) (g% 1) )
<&, /
. . . R
For most diatomic molecules the separation between the " b
rotational energy levels is much less than kT, , but the |
separation between vibrational levels is much greater than
KsT.0om - THis means that the heat capacity at room temperature

is typically 5R/2 per mole: with 3R/2 coming from the 10 50 1100 500 1000 5000
translational heat capacity and the other R from the rotations. rot Temperature (K) buiv
At room temperature the vibrational contributions are small,

only coming into play at higher temperature. Figure 155 Values of Cy/nR for hydrogen (H,) as a

function of temperature. The temperature scale is
logarithmic. (Adapted from Thermodynamics, Kinetic
Theory, and Statistical Thermodynamics, 3rd edition, by
EW.Sears and G.L. Salinger, Addison-Wesley, 1975.)
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Appendix

Simple Harmonic Oscillator

Consider a one dimensional harmonic oscillator with mass m and frequencyv .
a) Write down the Hamiltonian.
b) Use the vibrational energy

E,=(n +%)hv, n=012,---

to calculate the classical partition function.
hv

c) Calculate the quantum partition function. Show that in the limit of — 0 this result reduces to that

B
found classically in part (b).

d) Use the quantum mechanical partition function to calculate the internal energy, entropy, and the heat
capacity of a system consisting of N such oscillator as a function of temperature.

Answer:
a) In one dimension, the Hamiltonian of the system is given by:
A2
”(pxyqx): px +Ema)chxz, w =27V
2m 2
b) classically the partition function for single oscillator is:
i dpxdqx 1% 7,87?5 o pmwix
Zsp:Ztranstibr::[O __[Oe ﬁHT:E_J;e 2 dpx:[oe 2 dx
ZzzJ Yy 4
Vit ,Bmzo2
1 2zm | 2z 1 . h
h\ g \pme® pho 27
Consequently, for N-oscillator system we get
N
N 1
Z. =(Z = —
N ( sp) [ﬂhwj
F=-k,T InZ, =Nk,T In(,[;’hco)
H.W. prove the following thermodynamic quantities
u=kT In(ﬁha))
P=0
S =Nk [ In(Bhe)+1]
U =Nk,T = 2(%NkBT ) (Equipartition theorem)
C, =C, =(6ij =Nk,
ol Jyv

c) In quantum mechanics, since the energy levelsis E_ = (n +%)hv , the partition function is given by

7
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Z —ie‘ﬂE“ —e‘aie‘2na L (2sinha)™ pha
sp - T4 22 qa_ q-a , a= .
n=0 n=0 1 e e e

Inthe limita—>0 = e*—e*=(1+a+-)—(1-a+---)=2a= fhw then Z, , which

- Pho
is the same result as in part b.

d) For N-independent particles
N . -N
Z, =(Z,) =(2sinha)
Writing #=1/k T we could obtain the following results:

F =—k,TInZ, = Nk,T In(2sinha) = Nk,T |n[1 e__Za}: Nk, T |a+In(1-e™)]

—e
1 1 —2a
:N|:Eha)+ﬁln(1—e ):|

Uz_ian:N h—w cotha=N lha)+ ho
op 2 2

e -1
8Uj e” 2
C,=C,=| —| =Nk,—(2a
i (GT NV i (eza —1)2 ( )
s=F _nk, [acotha—In(2sinha)]

T
1
H.W. prove that in the limit of @ — 0 the internal energy will be: U = Eha)+ 2(% NkBT).

-y

show that the equation of state of a diatomic gas is the same as that of a monatomic gas.
Answer:

P= NkT(aéT/Zj . Where Z=2,.. 2L, S0 INZ=InZ,,..+InZ,,+InZ,,
T

15-9. Using the relation

Z.o and Z,;, do not depend on volume, so P = NkT(aéT/Zj = NkT(Mj .
T T

oV
27mkT )" 3, (27mkT
Zrans :V( m ] ,s01InZ .. =InV +Eln£ m J

h 2 trans h2

P=NkT(Mj =NkT(a|nV =NkT. So, PV = NKT
oV T N J; V -




