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CLASSICAL LIMIT

In classical mechanics we can specify simultaneously both g, and p, for a particle. In quantum

mechanics the uncertainty principle prevents this. A classical description is a reasonable approximation only
when the effect of h is negligible, i.e.

AQAp >>h
Consider the motion of a molecule in a gas. If p,, denotes the mean momentum and r,, its mean separation
from other identical molecules, then a classical description is valid when

r,p, >>h
or, Using De Broglei wavelength, p =h/A, when
r, >>4, (classical limit);
r, <<A4, (quantum limit);

Since A,, is a measure of the spread of molecule in space, it means that when r,, >>4,, holds, the
molecular wave functions do not overlap and therefore they are distinguished by their position.

Farticle
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To give a physical contentto r,, >> 4, ,
these cubes fill the volume V,

1/3
AN =V, r, :(V—j

we imagine that each particle occupies a tiny cube of side r,, and

N
If we anticipate and relate the temperature T with the average energy £ by:
p2 _ 3 1/2
& ~xg=—k,T, o = (3mk T
2m 2 ° Py = (SmksT )

Where k is the Boltzmaan constant, then
h

av

Therefore, the classical condition becomes

V 1/3 h
(N j (3mk,T )"

This means the classical description is valid when:
1- Nissmall (dilute gas),

2- Tis large, and

3- misnot too small.
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Examples:
Q) Molecules ina gas at NTP
Using Protecuies =10%° molecules m™=,

We have the available volume V... =107m?
USing rmolecule = 10710 m

We have the actual volume V. =10"m?®

So, in gases, the volume of a molecule is usually being much smaller than the volume available to it, we can,
in principle, identify each molecule in the gas. Therefore, the molecules are localized and distinguishable.

(iii))  Conduction electrons in metal

Using Puectrons =107 electrons m™=,
We have the available volume Vo eeron =107°m°,
Using M ection = ho M _io%m
p 2mE (1eV)
We have the actual volume V ooy =107 m°

So, in metals, the volume of the electron is larger than the available volume. Hence the electron’s wave
functions overlap considerably. We can not localize the electrons, they are indistinguishable, and quantum
statistics must be applied.

(i) We can also use the above analysis to estimate a transition temperature for the onset of quantum
effects. For example, we take He atoms in a fluid phase and conduction electrons in an alkali

vV 1/3 h
metal. From (—J >> ————— Wwe get:
N (3mk T )

2 2/3
{2
3mk; \V

_|1.2x10™(NV ¥* K m?, electrons
1.6x10"(N NV J’* K m?, He atoms

for He atoms % ~5x10® m*atom* =T ~10K

for electrons % ~1x10® m¥electron* = T #3x10° K

So we can see that at room temperature a classical treatment of atomic fluids is allowable whereas we must
use a quantum description of electrons in a metal up to a very high temperature. Gases at room temperature
have a density 1000 times less than a fluid and so will have a transition temperature even lower than 10 K.
They can clearly be treated as classical under most conditions.
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Symmetry of wave functions: Matter waves are described by a complex valued wave
function 'T'(r. f) cbeyving the Schrodinger eguation
g A = BTl ¢ “=-_L_.: P 2] §'=-Jri
HT(r.f) = E'T'(r,1), H=] Emv + Firl]. K ”E'r
which 15 the fundamental equation in gquantum mechanics. The simplest of V identical
noninteracting particles could be described by the Schrodinger equation
.

- - - _F"E
HT = E'I', H = ' 2_?:;!: J = 'I'{r1,r2,...:}'_‘.'} #
iml

where pi = p; » p,. and p; is the momentum operator of the ith particle. The Hamiltonian is
independent of the positions of the particles or any other coordinates. e g, spin, if any.

Introduce the permutation operator P. which mnterchanges particle 7 with particle j, i.e.
ri — rj. For example:

F]:'I'a(l}'l'.ﬁ(l} = Ta(2)Ts(1) or Pl]'I'{l._E} ="F(2,1)
The Hamiltonian H is invariant under all permutation of the identical particles:
PHP!=H = PHP'P=HP = [I-j'__li’]=ﬂ
The eigenstates of H should also be eigenstates of P.In general, the single product wave
function

N
T ="T(r,r... Py = ]___[ Trlri)
i

is not an eigenstate of P. An eigenstate must satisfy
PT(r) = p'T(r) = PYI(r) = pPP(r) = p2T'(F)
P2=i=>p2=1=:-p=i1
then
P‘E'U'} = 'T'(r) = Symmetric wavefonction
PP(r) = —'F(r) = Antisymmetric wavefunction
It 15 a law gf nature that the symmetry (5) or antisymmetric (4) under the interchange of

two particles 13 a property of the particles themselves.
Example, for two-particle system we have

T(1,2) = Ta(1)Ts(2) (classical) #
POL2) = PO = —L [0 (1)F4(2) + . ()Fs s meti
FeN1,2) = T9(2.1) A [Ta(1)Fs(2) + Ta(2)Ts(1)]  (symmetric)

i

THE1,2) = T2, 1}=#:'1‘,{1‘1'1‘5[2‘1—'1‘,{2‘1'1‘5{1‘1] (antisymmetric) ¥

For N fermions, we have the Slater’s determinant

Ta(l) Ta2) - - Tal¥)
Ta(l) T(2) - - TN
P10y = —L : : - &
(1. Wil
Taol) Ta2) - - TuAN)

Due to Pauli, with interchanges all the coordinates of the particles, then identical particles
could be divided into two groups, Bose gas and Fermi gas. The following table shows the main
properties of each system plus the vnnatural gas, Boltzmann gas.
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Maxewll-Boltzmann statistics This is the classical statistics and is applicable for a system of independent,
distinguishable (modified by N! for indistinguishable) and identical particles. No restriction about the
symmetry, spins, etc.

Bose-Einstein statistics is applicable for a system of independent, indistinguishable and identical particles
of integral spin (like photons). There is no restriction on the number of particles present in any given
quantum state.

Fermi-Dirac statistics is applicable for a system of independent, indistinguishable and identical particles of
half-integral spin (like electrons). In this statistics, a given energy state can be occupied at best by one

particle only.

B.E. (Bosons) F.D. (Fermions) M.B
Particles Indistinguishable Indistinguishable Distinguishable
Wave- Symmetric Antisymmetric Any
functions
. 1, 3
Spin 0,h,2h,--- Eh’ih’ Any
Examples photons, 7 -meson, *He electron, proton, , *He Any
n, 0,12 ... 0,1 0,12 ...
: n.+g;, —-1! g.! o
(i) Do = (n; +9; - O =D _9i"
BE n (g, - 1! FD n !(gi_ni)! Oy n ! *)
Q Qg :HwBE Qpp :Ha)FD Qug = HwMB
i=1 i=1 i=1
N. 1 1 Be
fle)=—L e e g @ he
( |) i e—a+ﬁgi _1 e—a+ﬁgi +1
Applications | Photons of radiation, Free electrons in metal and semi- | Gas molecules (except near 0
gas molecules at very conductor (except at very High K), electrons at Extremely
low temperature.) temperature.) High temperature.

(*) corrected by "correct Boltzmann counting” i.e. divided by N! This correction does not correspond to any
physical property of the particles in the system. It is just a rule that defines the mathematical model for

Indistinguishable particles.

** Define the dilute gas, dilute means that for all energy levels, the occupation numbers are very small
compared with the available number of quantum states (i.e. most quantum states are empty). We assume that

N; <<g;

forallj .

This condition holds for real gases except at very low temperatures.

For dilute gas one finds

Simply we can have

. L +1 for FD statistics
fi=—t=———— a={-1 for BE statistics
) (& -#)IkgT
j € +a ..
0 for MB statistics
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H.W. Use (i) for Fermi-Dirac and Bose-Einstein to prove the above distribution.

Example: Compare the Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann statistics when four particles
are arranged in two energy levels. Three particles are at energy level g1 having a degeneracy g: = 4 and one
particle at energy level €2 having a degeneracy g» = 2.

Solution:
n g-Ni 43X21
Wys Nl_ll N 41 Al 512
(N, +g,-D)! @B+4-D!I'1+2-1)!
P UV ) (L+2-1)1
i N I(gI 1)' 313! 11!

e g.! 41 21
WFD_H TN 3w

Example: Consider the case of N =3,k =2, n,=2ing, n,=11in¢,, g, =2 and g, =1. Then

n g,! (2+2-)! @1+1-1)! _ n2=1 — 5, =A
H = X =3;
N, (g, -1)! 21! 10!
1_[(N TR i LA SV LY n=2 ——— ¢&=0
N, (g, -1)! 20! “1xor
M 22><1l )
N'H l_ T
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Example: Consider a system consisting of two particles A and B in a volume V, each of which can be in
any one of three quantum states of respective energies, ¢ =0,¢,=1¢, and & =3¢. The system is in

contact with a heat reservoir at temperature T . Write an expression for the partition function "Z" if the
particles obey:

(a) the classical MB statistics and are considered distinguishable.
(b) the classical MB statistics and are considered undistinguishable.
(c) the particles obey BE statistics.

(d) the particles obey FD statistics.

R | Configuration = ( g) No. of microstates
0 g | 3¢ MB | BE | FD
1| AB 0 1 1 0
2| A B 1 2 1 1
3 AB 2 1 1 0
4| A B 3 2 1 1
5 A | B 4 2 1 1
6 AB 6 1 1 0

a— Zdis (M B) — e—,B(O+O)s + Ze—ﬂ(0+l)g + e—,B(1+l)s + 2e—ﬂ(0+3)g + 2e—ﬂ(1+3)s + e—ﬁ(3+3)s

=1+2e77¢ ye2P¢ 4 2e730% 4 De™Pe L g 70F¢

b— Z, . (MB)=1+e7 +e?* +e % +e* 1o
c—  Z(BE)=l+e¥ +e ™y v e
d - Z (FD) = e—,Bg + e_3ﬁ5 + e—4ﬂg

Notes: N = number of particles = 2, number of states = 3.
1- Number of microstates = 3 =9  (MB)  (number of states)"umber of particles
=3x2=6 (BE)  number of states x number of particles

=3 (FD)  number of states
We can not use BE and FD because they are not exact.
2- Define
P (name) = Probability that two particles are found in the same states
Probability that two particles are found in different states
M.B | B.E. | F.D.
Probability that two particles are found in the same states | 3 3 0
Probability that two particles are found in different states | 6 3 3
P (name) % 1 o
Then
P(MB) =3/6= %
P(BE) = 3/3=1
P(FD) = 0/3=0
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Thus in the BE case there is a great relative tendency for particles to bunch together in the same states (e.g.
Einstein condensation) than in classical statistics. On the other hand, in the FD case there is a greate relative
tendency for particles to remain apart in different states than there is in classical statistics.

Example: Consider a system of two identical and non-interacting particles in a volume V. Each particle has three
accessible energy levels g1 = 0, &2 = lg, and &3 = 2¢. The lowest energy level is doubly degenerate. Determine the
partition function and the mean energy of the system if:

1-the particles obey Fermi-Dirac statistics.
2- the particles obey Bose-Einstein statistics.

3- Determine the high temperature limit of the mean energy of the above three cases. Comparing the results what can
you conclude about the behavior of fermions and bosons in this limit?

Solution:

1- Fermi-Dirac Statistics: We have the following distributions:

Microstates
Energy/ R 1 2 3 4 5 6
2¢ 0 0 0 a a a
€ 0 a a 0 0 a
0 a| a a|o 0] a 0| a 0] a 010
Total Energy = 0 € € 2¢ 2¢ 3e

The partition function is:

Z, =% +2e77% 1267 o7 =14 2077 + 207 v

10z 2ce +4ge 4+3ce 3 T
T Zop  1+2e 420 1o 7ot (8sT =)

FD
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2- Bose-Einstein Statistics: We have the following distributions:
Macrostates
Energy/ R 1 2 3 5
2¢ 0 0 0 0
€ 0 0 0 a
0 aa | O 0 | aa a | a 0 0| a
Total Energy = 0 0 0 €
Microstates
Energy/ R 6 7 8 9 10
2¢ a 2 0 a aa
€ 0 0 aa a 0
0 al|o0 0| a 0|0 0|0
Total 2g 2¢ 2¢ 3g 4g
Energy =

The partition function is:

Zo =3 1267/ 43¢ e f pe i =342 13 1o et

102 2ce” +6ce” +3ce™” +4ge7

= Zo8

3-Note that: At high temperature limit (T — oo, B -> 0) fermions and bosons behave as classical Boltzmann

particles.

3+20 77 4372 L o3 4 oiE

Example: Consider a system of two non-interacting and identical particles in a volume V. Each particle has three
accessible energy levels €1= 0, €,= l¢, and g3= 2¢. Determine the partition function and the mean occupation numbers

n_l, n, ,and n_3 of the three quantum states if:

a) the particles obey Bose-Einstein statistics.

b) The mean energy U of the boson gas.

c) Determine the low temperature limit of n_l n_2 , Ny, and U of the above three cases. Comparing the results what
can you conclude about the behavior the bosons in this limit?

8

—)58 (aST —)OO)
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Solution:: For Bose-Einstein Statistics we have the following distributions:

Microstates

e,=2c 0| 0| 1]0|1]2

Total Energy= |0 | 1€ |2¢|2¢| 3¢ | 4e

ya =Ze ) = Z‘,gie_ﬂgi

{n;} i(energylevels)

7 = .e_zﬂgl + e_ﬂ(€1 + 82) + e_ﬂ(gl + 83) + e_zﬂgz + e_lB(‘c"z + 83) + e_2ﬂ83

T S 1+ e—Zﬂg)(l+ e fe +e_2ﬂ‘9)

— 1 (ozZ
Use N, =———| — :
Bz ) .

a-
= oe2Be. Pl +e)  —PBle+e) ) 0o PE 2P
| : Wre 28y e Fe L e72Pey
—_ e~ 2Be, , Pl +e) , ~Ble+e) ) PR e T
2 ‘ Wre 2Py e Fe L om2PEy
- 2o=2P8,  Blete)  Ble+e) ) o268 1 e g2 |
3 z (l+e_2ﬂ8)(1+e_ﬂg +e—2,35)

R Ty R N )

b- U=n, +n,e,+N,e, =
(e ~2P8 )1 re P8 Lo 72P¢)

¢- Low temperature limit: T — 0= ¢~ A% =0
n—->2 n—->0 n—->0 U->O0




