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CLASSICAL LIMIT 

 

In classical mechanics we can specify simultaneously both 
iq and 

ip  for a particle. In quantum 

mechanics the uncertainty principle prevents this. A classical description is a reasonable approximation only 

when the effect of h is negligible, i.e. 

q p h    

Consider the motion of a molecule in a gas. If 
avp  denotes the mean momentum and 

avr  its mean separation 

from other identical molecules, then a classical description is valid when 

av avr p h  

or, Using De Broglei wavelength, /p h  , when 

av av

av av

            (classical limit);

            (quantum limit);

r

r








 

Since 
av  is a measure of the spread of molecule in space, it means that when 

av av  r   holds, the 

molecular wave functions do not overlap and therefore they are distinguished by their position. 

 
To give a physical content to av av  r  , we imagine that each particle occupies a tiny cube of side avr  and 

these cubes fill the volume V, 
1/3

3

av av,  
V

r N V r
N

 
   

 
 

If we anticipate and relate the temperature T with the average energy   by: 

 
2

1/ 2av
av

3
, 3

2m 2
B B

p
k T p mk T   

Where Bk  is the Boltzmaan constant, then 

 
av 1/ 2

3 B

h

mk T
  

Therefore, the classical condition becomes 

 

1/3

1/ 2
 

3 B

V h

N mk T

 
 

 
 

This means the classical description is valid when: 

1- N is small (dilute gas),   

2- T is large, and  

3- m is not too small. 
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Examples: 
(i) Molecules in a gas at NTP 

           

25 3

25 3

10

Using                                         10  molecules m ,

We have the available volume   10 m ,    

Using                                           10

We have 

molecules

molecule

molecule

V

r m

 











30 3the actual volume     10 mmoleculeV 

 

So, in gases, the volume of a molecule is usually being much smaller than the volume available to it, we can, 

in principle, identify each molecule in the gas. Therefore, the molecules are localized and distinguishable. 

 

(iii) Conduction electrons in metal 

           

28 3

28 3

Using                                                 10  electrons m ,

We have the available volume           10 m ,   

Using                                                  

electrons

electron

e

V

r

 







9

27 3

10 m
2 (1eV)

We have the actual volume             10 m

lectron

electron

h h

p mE

V





  



 

So, in metals, the volume of the electron is larger than the available volume. Hence the electron’s wave 

functions overlap considerably. We can not localize the electrons, they are indistinguishable, and quantum 

statistics must be applied. 

 

(iii) We can also use the above analysis to estimate a transition temperature for the onset of quantum 

effects. For example, we take He atoms in a fluid phase and conduction electrons in an alkali 

metal. From 
 

1/3

1/ 2
3 B

V h

N mk T

 
 

 
 we get: 

 

       

 

 

 K103electron m 101  electronsfor 

 K10atom m 105 atoms for He

atoms  He,m K 101.6

electrons ,m K 102.1

3

51329

1329

23218-

23214

322






































T
N

V

T
N

V

VN

VN

V

N

mk

h
T

B

 

So we can see that at room temperature a classical treatment of atomic fluids is allowable whereas we must 

use a quantum description of electrons in a metal up to a very high temperature. Gases at room temperature 

have a density 1000 times less than a fluid and so will have a transition temperature even lower than 10 K. 

They can clearly be treated as classical under most conditions. 
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Maxewll-Boltzmann statistics This is the classical statistics and is applicable for a system of independent, 

distinguishable (modified by N! for indistinguishable) and identical particles. No restriction about the 

symmetry, spins, etc. 

Bose-Einstein statistics is applicable for a system of independent, indistinguishable and identical particles 

of integral spin (like photons). There is no restriction on the number of particles present in any given 

quantum state. 

Fermi-Dirac statistics is applicable for a system of independent, indistinguishable and identical particles of 

half-integral spin (like electrons). In this statistics, a given energy state can be occupied at best by one 

particle only. 

 B.E. (Bosons) F.D. (Fermions) M.B 

Particles Indistinguishable Indistinguishable Distinguishable 

Wave-

functions 

Symmetric Antisymmetric Any 

Spin 0, ,2 ,  
1 3

2 2
, ,  Any 

Examples photons,  -meson, 4 He  electron, proton, , 3 He  Any 

in  0, 1, 2, ..... 0, 1 0, 1, 2, ..... 

( )i  
( 1)!

!( 1)!

i i
BE

i i

n g

n g


 



 

 

!

! !

i
FD

i i i

g

n g n
 


 (*)

!

in

i
MB

i

g

n
   

  

1

r

BE BE

i




   
1

r

FD FD

i




   
1

r

MB MB

i




   

i

i
i

g

N
f )(  

1

1


 ie


 

1

1


 ie


 ie


 

Applications Photons of radiation,  

gas molecules at very 

low temperature.) 

Free electrons in metal and semi- 

conductor (except at very High 

temperature.) 

 

Gas molecules (except near 0 

K), electrons at Extremely 

High temperature. 

(*) corrected by ''correct Boltzmann counting'' i.e. divided by N! This correction does not correspond to any 

physical property of the particles in the system. It is just a rule that defines the mathematical model for 

Indistinguishable particles.  

** Define the dilute gas, dilute means that for all energy levels, the occupation numbers are very small 

compared with the available number of quantum states (i.e. most quantum states are empty). We assume that 

         for all j jN g j . 

This condition holds for real gases except at very low temperatures. 

For dilute gas one finds 

1 !

iNr
i

FD BE MB

i i

g

N
  



    

Simply we can have 

  /

1 for FD statistics
1

, 1 for BE statistics

0 for MB statistics
j B

j

j k T
j

n
f a

g e a
 




   
 



 

--------------------------------------------------------------------------------- 
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H.W. Use  ( )i  for Fermi-Dirac and Bose-Einstein to prove the above distribution.   

------------------------------------------------------------------------------------ 

Example: Compare the Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann statistics when four particles 

are arranged in two energy levels. Three particles are at energy level ε1 having a degeneracy g1 = 4 and one 

particle at energy level ε2 having a degeneracy g2 = 2.  

Solution: 
 

3 1

1

1

1

4 2
! 4! 512

3!1!

( 1)! (3 4 1)! (1 2 1)!
40

!( 1)! 3!3! 1!1!

! 4! 2!
4

!( )! 3!1!1!1!

iNn

i
MB

i i

n

i i
BE

i i i

n

i
FD

i i i i

g
w N

N

N g
w

N g

g
w

N g N








  

     
  



  








 

------------------------------------------------------------------------------------- 

Example: Consider the case of 3, 2N k  , 
1 2n  in

1 , 
2 1n   in 

2 , 
1 2g   and 

2 1g  . Then  

 

1

1

2 1

1

! (2 2 1)! (1 1 1)!
3;

!( 1)! 2! 1! 1! 0!

( 1)! 2! 1!
1;

!( 1)! 2! 0! 1! 0!

2 1
! 3! 12;

! 2! 1!

i

n
i

i i i

n
i i

i i i

nn
i

i i

g

N g

N g

N g

g
N

n







   
  

  

 
  

  


 









 

-------------------------------------------------------------------------------- 

1 0   

2    

1 2n 
 

2 1n   
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Example: Consider a system consisting of two particles A and B in a volume V, each of which can be in 

any one of three quantum states of respective energies, 
1 0  ,

2 1  , and 
3 3  . The system is in 

contact with a heat reservoir at temperatureT . Write an expression for the partition function "Z" if the 

particles obey: 

(a) the classical MB statistics and are considered distinguishable. 

(b) the classical MB statistics and are considered undistinguishable. 

(c) the particles obey BE statistics. 

(d) the particles obey FD statistics. 

 

R Configuration  totalE   No. of microstates 

0   3  MB BE FD 

1 AB   0 1 1 0 

2 A B  1 2 1 1 

3  AB  2 1 1 0 

4 A  B 3 2 1 1 

5  A B 4 2 1 1 

6   AB 6 1 1 0 

 

i i

i

n E

R

Z e
 

  

(0 0) (0 1) (1 1) (0 3) (1 3) (3 3)

2 3 4 6

2 3 4 6

2 6 3 4

( ) 2 2 2

1 2 2 2

( ) 1

( ) 1

( )

dis

undis

a Z MB e e e e e e

e e e e e

b Z MB e e e e e

c Z BE e e e e e

d Z FD e

           

         

         

     

 

           

    

    

    



      

     

      

      

  3 4e e   

 

Notes: N = number of particles = 2, number of states = 3. 

1- Number of microstates = 23 9      (MB)      (number of states)number of particles 

                                          = 3 2 6    (BE)       number of states x number of particles 

                                          = 3              (FD)       number of states 

We can not use BE and FD because they are not exact. 

2- Define    

Probability that two particles are found in the same states
(name)

Probability that two particles are found in different states
P   

 

 M.B B.E. F.D. 
Probability that two particles are found in the same states  3 3 0 

Probability that two particles are found in different states  6 3 3 

(name)P  
1

2
 1 0 

 

Then 

    P(MB) = 3/6 =  ½ 

    P(BE)  =  3/3 = 1 

    P(FD)  =  0/3 = 0 
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Thus in the BE case there is a great relative tendency for particles to bunch together in the same states (e.g. 

Einstein condensation) than in classical statistics. On the other hand, in the FD case there is a greate relative 

tendency for particles to remain apart in different states than there is in classical statistics. 

------------------------------------------------------------ 

Example: Consider a system of two identical and non-interacting particles in a volume V. Each particle has three 

accessible energy levels ε1 = 0, ε2 = 1ε, and ε3 = 2ε. The lowest energy level is doubly degenerate. Determine the 

partition function and the mean energy of the system if: 

1- the particles obey Fermi-Dirac statistics. 

2-  the particles obey Bose-Einstein statistics. 

3- Determine the high temperature limit of the mean energy of the above three cases. Comparing the results what can 

you conclude about the behavior of fermions and bosons in this limit?  

Solution:  

1- Fermi-Dirac Statistics: We have the following distributions: 

 

 

Energy /   R 

Microstates 

1 2 3 4 5 6 

2ε 0 0 0 a a a 

ε 0 a a 0 0 a 

0 a a 
 

a 0 
 

0 a 
 

0 a 
 

0 a 
 

0 0 
 

Total Energy = 0 ε ε 2ε 2ε 3ε 

 

The partition function is: 

31 2 2 32 2 1 2 2o

FDZ e e e e e e e
                     

)(
2

3

221

3421
32

32
















Tas
eee

eeeZ

Z
U FD 



 


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2- Bose-Einstein Statistics: We have the following distributions: 

 

 

Energy /   R 

Macrostates 

1 2 3 4 5 

2ε 0 0 0 0 0 

 ε 0 0 0 a a 

0 aa 0 
 

0 aa 
 

a a 
 

a 0 
 

0 a 
 

Total Energy = 0 0 0 ε ε 

 

 

Energy /   R 

Microstates 

6 7 8 9 10 

2ε a 2 0 a aa 

ε 0 0 aa a 0 

0 a 0 
 

0 a 
 

0 0 
 

0 0 
 

0 0 
 

Total 

Energy = 

2ε 2ε 2ε 3ε 4ε 

 

The partition function is: 

31 2 4 2 3 43 2 3 3 2 3o

BEZ e e e e e e e e e
                           

)(
2

3

323

43621
432

432
















Tas
eeee

eeeeZ

Z
U BE 



 



        

3-Note that: At high temperature limit ( T , β -> 0) fermions and bosons behave as classical Boltzmann 

particles.  

--------------------------------------------------------------------------------------------- 

Example: Consider a system of two non-interacting and identical particles in a volume V. Each particle has three 

accessible energy levels ε1 = 0, ε2 = 1ε, and ε3 = 2ε. Determine the partition function and the mean occupation numbers 

21, nn , and 3n  of the three quantum states if: 

a) the particles obey Bose-Einstein statistics. 

b) The mean energy U of the boson gas. 

c) Determine the low temperature limit of 21, nn , 3n , and U of the above three cases. Comparing the results what 

can you conclude about the behavior the bosons in this limit?  
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Solution:: For Bose-Einstein Statistics we have the following distributions: 

 

Energy /   R 

Microstates 

1 2 3 4 5 6 

 23   0 0 1 0 1 2 

  2  0 1 0 2 1 0 

01   2 1 1 0 0 0 

Total Energy = 0 1 ε 2 ε 2ε 3ε 4ε 

 









)( levelsenergyi

i

n

n

BE
i

i

s

ss

egeZ




 

3 2 3 31 1 2 21( ) ( ) 22 ( ) 2
.

2 3 4 2 2
1 2 (1 )(1 )

Z e e e e e e

e e e e e e e

          

      

       
     

      
        

 

,

1
Use  .

j i

i

i T

Z
n

Z
 

 


 
   

 
 

a- 

1 31 1 2

32 1 2

3 1 3 2 3

1

2

2

3

( )2 ( ) 2
2 2

 ,
2 2

(1 )(1 )

( )2 ( ) 2
2 (1 2 )

 ,
2 2

(1 )(1 )

2 ( ) ( ) 2
2 (1 2

 

e e e e e
n

Z e e e

e e e e e e
n

Z e e e

e e e e e e
n

Z

       

  

        

  

        

     
   

 
  

  

      
    

 
  

  

      
   

 

2
)

.
2 2

(1 )(1 )e e e



  



  
  

 

 

b-    1 1 2 2 3 3

2 3
(1 4 3 4 )

 U .
2 2

(1 )(1 )

e e e e
n n n

e e e

   


  
  

   
  

   
  

  
 

c- Low temperature limit: 00 





eT  

0 ,0 ,0 ,2 321  Unnn  

-------------------------------------------------------------------------------------- 

 


