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Chapter 13 Section 1,2,3 

Maxwell-Boltzmann distribution 

 
• It is our goal to determine the equilibrium configuration (the Maxwell-Boltzmann (MB) distribution) 

for an ensemble of N  identical systems (which may be labelled as 1, 2, … ,N), sharing a total 

energy E; let n ( n=1,2,…) denote the energy eigenvalues of the systems. If 
nN  denotes the number 

of systems which, at any time t, have the energy value n  , then the set of numbers  nN  must 

satisfy the Two restrictive conditions  

                            constanti

i

N N  ,               (Conservation of particles)                (i) 

                           constanti i

i

U N                      (Conservation of energy)               (ii) 

where iN  is the number of particles on the energy level i with the energy i . 

 

The MB distribution function makes three assumptions:  

 

[1] The particles in the system are distinguishable (identifiable) and non-interacting.  

[2] The number of systems is constant N . 

[3] The total energy is constant E . 

 

Energy levels 
1  2   

n   

# of systems 
1N  2N   

nN  
i

iNN  

energy 
1 1N   2 2N    

n nN   
i

iiNU   

 

where  /U E N  denotes the average energy per system in the ensemble. Any set  nN  that satisfies the 

restrictive conditions (i, ii) represents a possible mode of distribution of the total energy E  among the N  

members of the ensemble. Furthermore, any such mode can be realized in a number of ways, for we may 

effect a reshuffle among those members of the ensemble for which the energy values are different and 

thereby obtain a state of the ensemble that is distinct from the original one. Denoting the number of different 

ways of doing so by the symbol  , we have 

     

1

!

!
n r

i

i

N
N

N


 


   .                                                                             (iii) 

In view of the fact that all possible states of the ensemble, which are compatible with conditions (i, ii), are 

equally likely to occur, the frequency with which the distribution set fnrg may appear will be directly 

proportional to the number  n
N . Accordingly, the “most probable” mode of distribution will be the one 

for which the number   is a maximum. We denote the corresponding distribution set by  *

iN ; clearly, the 

set  *

iN must also satisfy conditions (i, ii). As will be seen in the sequel, the probability of appearance of 

other modes of distribution, however little they may differ from the most probable mode, is extremely low! 

Therefore, for all practical purposes, the most probable distribution set  *

iN is the only one we have to 

contend with. 
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Example: Use 





r

i

iN

N
w

1

!

!
 where   i

i

N N  to prove that  


i

ii NNNNw lnln)ln(  

Answer:  

 

  )!(ln)!ln(.......)!ln()!ln()!ln(

)().......!)(!(ln)!ln()!ln()!ln()

!

!
ln()ln(

21

21

1

1

i

i

r

i

ir

i

i

NNNNN

NNNNN

N

N
w












 

Apply Stirling’s approximation in the form NNNN  )ln()!ln( , we can then approximate the expression for the number of 

microstates as 

 







i i

ii

N

i

iii

i

iii

NNNNNNNNNN

NNNNNNw

lnlnlnln

)ln(ln)ln(



. 

 By differentiation with respect to Ni, we can get 

                              

/

0

ln( ) ( ln ) ln (ln )

0 ln ln

i i

i i i i

i i N N

i i i i i

i i i

w N N N N N N

N N N N N





  

    

 

  



   

   . 

The last equation gives the change in )ln(w as the number of particles in each level is varied. 

 

Non-Degenerate Case: 
Example: Use the two constrains 

                            constant  0i i

i i

N N N      ,                              (i) 

                           constant 0i i i i

i i

N E NU N                                       (ii) 

And the the expression for the total number of miscrostsates: 

            

1

!

!
r

i

i

N

N


 


           ln( ) ln 0

i i

i

N N      .                            (iii) 

To derive the MB-distribution 
* i

iN e
  

  

Answer: Start with the constrains 

                            constant  0i i

i i

N N N      ,                              (i) 

                           constant 0i i i i

i i

N E NU N                                       (ii) 

where   and   are the Lagrangian undetermined multipliers and are related to the physical prosperities of 

the assembly. Also, the expression for the total number of microstates: 
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1

!

!
r

i

i

N

N


 


           ln( ) ln 0

i i

i

N N      .                            (iii) 

 

Adding (i), (ii) and (iii) implies: 
*ln 0i i i

i

N dN      . 

It is possible to select values of   and   such that one of the terms in the sum (i.e. i) is zero, the value of 

i
dN  being immaterial. The remaining 

i
dN  terms are then independent of one another (since 

i
dN  may be 

obtained from equation (i). It is now possible to set each of the coefficients of 
i

dN to zero in the last 

equation and this gives:               
* i

iN e
  

 . 

which gives the distribution for the most probable distribution. the * is used for most probable distribution, 

and it be suppressed in the following discussion. 

 

 Degenerate Case : The only difference will be in equation (iii), which will be replaced by: 

            
1

!
!

iNr
i

i i

g
N

N

              ln( ) ln ln
i i i i

i i

g N N N       .                   (iv) 

The new distribution will be 
* i

i iN g e
  

 . 

We must now identify the two constants   and    in this distribution equation. In the following we will 

not use the *. 
 

Identification of α :  Now we have i

i i

i i

N N g e N
  

     

i

i

i

N N
e

zg e








  


, 

Where
States All levels

 i i

iz g e e
   

    is known as the partition function for single particle and is of the 

utmost importance in statistical thermodynamics.  

The Maxwell-Boltzmann distribution is therefore (

sp 

i

i
i

g e
N N

Z

 

 ): 

                                            

    average number of 
particles per quantum state

( )
 

i

i
i

i

N e
f N

g z

 




    

where )( if   is the probability of occupation of a single state belonging to the ith energy level.  

We can also define  

,  with  
 

i

i
i i

N e
P g N

N z



    

as the probability that a particle is chosen at random is in the level i (or the probability that a particular 

energy state is occupied), with the normalization condition: 
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1i

i

P   

The average value of a physical quantity will be expressed as:  

1 1

 
i

i i i i i i

i i i

R PR N R g e R
N z


     . 

For example, the average energy as: 

1
,i

i i i i

i i

E
U E P g e

N z

  
      

-------------------------------------------------------------------------------------- 

Example: If a particle in a system can be in only two non-degenerate states of 

energy  1   and  2  , then  

1 2

States

(1) (1) 2cosh( ) i

i e ez g e e e
    


   

      , 

 
   

1 2

1 2 tanh( )
2cosh( )

1E e e
U e e

N z

 
   




  


   
      

 and the total energy 

tanh( )E NU N     

which allows us to find   in terms of U .  

----------------------------------------------------------------------- 

Example: A system has three energy levels of energy 0, 100 Bk , and 200 Bk , with degeneracy of 1, 3, and 5 

respectively. Calculate the partition function, the relative population of each level, and the average energy 

at a temperature of 100 K. [Hint: take 1/100 Bk  ] 

  100 /100 200 /1000 1 2
1 5 1 3 5 2.783i B B B BE k k k k

i

i

e e ez g e e e
    

        

The probability is given by 
i

i

i i

N e
P g

N z



   

So, the probability of the particles being in the lowest, first and second states are: 
1 2

0 1 2

3 51
0.360, 0.397, 0.243

e e

z z z
P P P

 

       

i  
ig  i  i

ig e  
 i

i i

e
P g

z

 

  
i iP  

0 1  0  1  0.360  0 

1  3  100 Bk  1
3e


 0.397  39.7 Bk  

2  5  200 Bk  2
5e


 0.243  48.6 Bk  

   
sp 2.78Z   Total 1  88.3 BE k  

 

Note that: 
0 1 2

1P P P   . 

The average energy is 

 0 1 20 100 200 88.3B BU P P P k k        

------------------------------------------------------------- 
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Example: Consider a system of two non-interacting, identical and non-interacting particles in a volume V. 

Each particle has three accessible energy levels ε1 = 0, ε2 = 1ε, and ε3 = 2ε. The lowest energy level is doubly 

degenerate. Determine the partition function and the mean energy of the system if the particles are 

distinguishable and obey the classical Maxwell-Boltzmann statistics. Determine the high temperature limit 

of the mean energy.  

 

Solution:  For Maxwell-Boltzmann Statistics, we have the following distributions: 

 

Energy Microstates # 

 1 2 3 4 

2ε 0 0 0 0 

 ε 0 0 0 0 

0 ab 0 
 

0 ab 
 

a b 
 

b a 
 

Total Energy = 0 0 0 0 
 

Energy Microstates # 

 5 6 7 8 

2ε 0 0 0 0 

ε b a b a 

0 a 0 
 

b 0 
 

0 a 
 

0 b 
 

Total Energy = ε ε ε ε 

 

Energy Microstates # 

 9 10 11 12 13 

2ε b a b a 0 

ε 0 0 0 0 ab 

0 a 0 
 

b 0 
 

0 a 
 

0 b 
 

0 0 
 

Total Energy = 2ε 2ε 2ε 2ε 2ε 

 

Energy Microstates # 

 14 15 16 

2ε b a ab 

ε a b 0 

0 0 0 
 

0 0 
 

0 0 
 

Total Energy = 3ε 3ε 4ε 

 

Number of macrostates = 4 

The total number of microstates = 
2 2(2 1 1) 4 16Ng      . 

The partition function is: 

31 2 4

2 3 4

4 4 5 2

4 4 5 2

i o

MB i

i

Z g e e e e e e

e e e e

     

   

    

   

     

    


 

2 3 4

2 3 4

1 4 10 6 4

4 4 5 2

3
( )

2

MB

Z e e e e
U

Z e e e e

as T

       

       

   





   

   

   
  

    

 
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Partition function 
 

a- The N-particle partition function for distinguishable particles 
 

Let's start with one spin particle in external magnetic field, we will have two states  with energy B and 

 with energy B , then  

1

B Bz e e      

 
For two spins, there are four states of the whole system, with energy 2 B ,  and  , both with 

energy zero, and with energy 2 B . Thus the two-particle partition function is  

 

   

2 0 0 2 2 0 2

2

2 22

1

2B B B B

B B

z e e e e e e e

e e z

       

   

 



      

  
 

In general, for N particles, the energies range through    , 2 , , 2 , ,N B N B N n B N B   


      

with there being !/ !( )N n N n
 

    separate states with n
 down-spins. So  

 
 

There is a caution, which can be ignored on first reading. The argument says that there are a number of 

different states with the same number of down spins. Since the spins are arranged on a lattice, this is correct; 

every spin can be distinguished from every other spin by its position. When we go on to consider a gas, 

however, this is no longer so, and the relation between 
1z and Nz changes. 

 

 

b- The N particle’s partition function for indistinguishable particles, (No Pauli’s’ exclusion 

principle).  
 

As we know for the N -distinguish particles (as held for the paramagnet by their position in the lattice) we 

have  1

N

Nz z . Consider again the simplest case, of two particles and two energy levels. If the particles are 

distinguishable, as in the upper picture below, there are four states, two of which have energy , and the 

two-particle partition function is 

 
20 2

2 12z e e e z       
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If the particles are indistinguishable, however, there are only three states, as in the lower picture, and the 

partition function is  

 
20 2

2 1z e e e z       

If we use  
2

1z , we over-count the state in which the particles are in different energy levels. In general there is no simple 

expression for the -particle partition function for indistinguishable particles.  

However we note that  1

N
Z over-counts the states in which all particles are in different energy 

levels by exactly . So if we are in a position where there are many more accessible energy levels (that is, 

levels with energy less than a few Bk T ) than there are particles, the probability of any two particles being in 

the same energy level is small, and almost all states will have all the particles in different levels. Hence a 

good approximation is  

 1

!

N

N

z
z

N
  

 
c- The N particle’s partition function for indistinguishable particles, (with Pauli’s’ exclusion 

principle).  
 

Do it. 
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We can prove the following (Sec. 14.1) 
1- Average energy (the ensemble average of the energy of the system).  

1 1 1 ln
e er r

r r r

r r r

Z Z
U P

Z Z Z

  
  

   
      

  
    

-------------------------------------------------------------------------------------- 

2- Equivalent expressions “average entropy” (Shannon information entropy) 

 ln( ) ln , where i
B N B i i i

i

N
s k k P P P

N
      

Proof: Start with the definition 

 
1

ln( ) ln !/ ! ln ln
r

B N B i B i i

ii

S k k N N k N N N N


   
       

  
  

The average entropy of one of the elements in the ensemble is / ,s S N  and 

   

 

1 1 1
ln( ) ln ln ln ln ln

ln

i i
N i i i i i

i i i i

i i

i

N N
N N N N N N N N

N N N N N

P P

     
           

    

 

   



 

------------------------------------------------------------------------------------ 

3- Entropy 

   

 

sp

sp

sp sp sp sp

sp sp sp

ln ln ln

ln ln ln

i

i

i

B i i B i B i i

i i i

i B B
B B B B

i i

e
s k P P k P k P Z

Z

e k k
k Z e k E Z Z k E k Z

Z Z Z









  






 
         

 

     

  

 

 

-------------------------------------------------------------------------------------- 

4- Identification of β:   
Then the entropy will be: 

spln( ) lnB B BS k k N Z k U     

Then Maxwell’s law gives 

sp

 

ln1

1
   

B B B B

V V V

U

N

B

d ZS
k N k k U k

T U d U U

k T

 
 







       
         

       

 

 

---------------------------------------------------------------------------- 
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5- Helmholtz Free Energy 

The above equation for S can be rewritten as  

 

sp splog ln .B BF U TS k T Z k T Z       

Comments: 

i- It is easy to find 
spZ  as a function of F  as: sp

FZ e   

ii-  Since lnBF k T Z   we can alternatively derive the internal energy from F. 

 ln
B

F
U Z F

k T


  

    
     

   
 

-------------------------------------------------------------------------------------- 

6- Average pressure 

,

1
p p p e r r

r r

r r T N

P
Z V

   
    

 
   

With 

1 2

1 2

sp

sp 1 2

, ,, T N T NT N

Z e e

Z
e e

V V V

 

  
 

 

 

  

      
         

      

 

So that 

1
sp

,,

1 i

i T NT N

Z
e

V V

 




   

    
   

  

Substituting this result in the expression for mean pressure, we get 

 spsp

sp ,
,

ln1 1 1
p p

T N
T N

ZZ

Z V V 

  
          
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Density of States (Sec. 12.5 and 6)  
 

 The density of states refers to the number of quantum states per unit energy.  In other words, the density of states, 

denoted by ( )g E , indicates how densely packed quantum states in a particular system.  So, what is the importance of the density 

of states?  

Ultimately, we are going to be interested in calculating the available states of a particle in quantum system. The number of 

quantum states is important in the determination of optical properties of a material such as a semiconductor (i.e. carbon nanotubes 

as well as quantum dots). It will be used extensively in the transport phenomena, such as how a device conducts electric current.   

  

One dimension 

  

Let’s once again look at the infinite potential well in one dimension 

   
 Figure 1. The infinite potential well 

 

We decided that this had solutions of the form: 

    
2

sinx k x
a

  (1.1) 

where k  is the wave vector  and has the only allowed values are: 

 1,2,3,...
n

k n
a


   (1.2) 

So we could plot the allowed states on a simple one-dimensional graph, as in Fig. 2: 

  

  12 3 4 5
0 k m

a a a a a

     
 

  

 Figure 2. Plot of the allowed states in the 1D infinite well. 

 

We could think in terms of how many states we had in a given length in the k -space.  (Here you have to be a little careful, 

because k has units of inverse length.)  Notice that the well has a finite dimension a, but k  extends from zero to plus infinity.   

We could talk about the density of states.  Since there are two states, due to the multiplicity of the spin (2s 1) , for each / a  

length in the k -space 

  1

2
D

a
g k


  (1.3) 

So if we wanted to total number of states between k = 0 and 10 /k a , for instance 

x=0                           x=a 

V=infinity 

V= 0 
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10 /

0

2 10
2 20

a a a
N dk

a

 

 
    (1.4) 

 In actuality, we will be more interested in relating allowed states to energy.  So we use 

  

2 2

2

k
E

m
 , 

or 

  

2mE
k  . 

Taking the differential gives 

  

1 2

2

m dE
dk

E
  (1.5) 

If we look for the available states up to a certain energy, 

 

max max max

0 0 0

2 2 1 2 2
.

2

k E Ea a m dE ma
N dk dE

E E  
      

The term in the integrand is the quantity we are looking for.  We will divide out the a because we want a more general term for 

any confined region in one dimension.  This is the density of states, i.e., the number of available states per energy per distance. 

  1

2
D

m
g E

E
  (1.6) 

It has the units: 

  
 

  

 

 
 

1/2 1/2

1 1/2 1/2

kg kg 1
= =

J mkg  mJ s J
J s

s

Dg 
 
 
 

  

 Remember that energy of a state in the infinite potential well is given by nE  

 

22 2 2
2

2
1,2,3,..

2 2
n

n
E n n

m a ma

  
   

 
 

So it makes sense that as we go higher up in energy, the density of the available states is reduced. 

Two Dimensions 

 

 Suppose now that we have a two-dimensional infinite well, as shown in Fig. 3.  For simplicity, we will assume both 

dimensions are a.  

  
Figure 3.  Diagram of a two-dimensional infinite well.  Inside the rectangle, V= 0 and 

inside the rectangle V   . 

 

The separable solution will be of the form 

  ,

2
, sin sin . 1,2,3..., 1,2,3n m

n m
x y x y n m

a a a

 


   
     

   
 (1.7) 

And the corresponding energies: 
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  
2 2

2 2

, 22
n mE n m

ma


  . 

This gives us the possibilities of degenerate states: states that have the same energy, but different functions.   Obviously, 

1,2 2,1E E , but they correspond to different states that are orthogonal to each other, i.e., 

    *

1,2 2,1
0 0

, , 0
a a

x y x y dxdy    . 

As n and m become large numbers, there will be more degeneracies. 

 We could now make a two-dimensional plot of the available states, as shown in Fig. 4. 

  

 
2 3 4 5

0
a a a a a

    
 

 Figure 4.  Diagram of the two-dimensional k space 

 

 For a given absolute value of k, in the 2D k-space we will encompass an area of 

  
21

4
Area k  

The factor ¼ indicates that I’m only using positive values of k. The differential is 

  
2

4
dA k dk . 

So if we want to get the number of states up to maxk  

  

 

max
2 2

max

20

1 1
2

2 2/

k a k
N k dk

a



   (1.8) 

The two in front of the integral is because we have two spins per state.  Once again, I’m more interested with the distribution with 

respect to energy, so 

  

2 2 2
,

2

k mE
E k

m
  , 

and, 

  

2

2
,

k m
dE dk k dk dE

m
  . 

Substituting this into the integral above gives 

  
max

2

20

E a m
N dE


  . 

So my two-dimensional density of states, after dividing out the physical dimension 
2a  is 

   2 2D

m
g E


 . (1.9) 

What are the units? 
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   
 

 

 
2 2 2 2

2

2

kg kg 1
= =

kg m J mJ s
J  s

s

Dg 
    
 
 

. 

i.e, states per energy, per area. 

 

Three Dimensions 

 

 In three dimensions, each state occupies a volume  
3

/ a .  A volume in the 3D k space enclosed by a distance k space 

is given by 

  
34

3
V k  

And the differential is 

  
24dV k dk . 

Now we think of k as the radius in a sphere.  So the total available states up to 
maxk  is 

  
max max

3

3 2

0 0

1 1
2 2 4

8 8

k ka a
N dV k dk

 

   
    

   
  . (1.10) 

The 1/8 indicates that we consider only positive values of k, and, as always, the 2 accounts for the two values of spin.  Once again, 

we would prefer to work with energy so  

  

2mE
k  , 

and 

  

2 1

2 2

m dE m dE
dk

E E
  , 

so Eq. 1.10 becomes 

  

 

max

max

23

0

3/ 23

3 3 0

2 2
4

8 2

8 2

8 2

k

E

a mE m dE
N

E

a m
EdE








  
   

   







 

If we want to talk about the number “per volume,” we can divide out the
3a .  Also, we can replace 

3 38 with just 
3h .  Then we 

have an expression for the 3D density of states in the form: 

   
 

3/ 2

3 3

4 2
D

m
g E E

h


  (1.11) 

What are the units? 

  

 
 

 
 

 

 

1/ 23/ 2 3/ 2 2
1/ 2

3 3 22 3

1/ 23/ 2 22

22 4 4 2 3

1

D

kg kg kg m
g J

sJ J sJ s

kg mkg kg m

skg m J m kg J m
J

s

 
   

    

       
            
 
 
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Density of states in different spaces (for your information) 

In momentum space, particles within a small volume

3

b

h

V
   are indistinguishable; therefore it represents an eigenstate. At any 

instant, all particles having the momenta between p  and p dp , will lie within a, shell of volume 
24 p dp . Therefore, the 

total number of eigenstates is given by 

2( ) 4
b

a
g p dp p dp


  

where that a is a constant related to the “polarization” of interested system, that is 

 

In a vibrating solid, there are three types of waves: one longitudinal with velocity 
lc  and two transverse with velocity

tc . All are 

propagated in the same direction. The phonons are related to the vibrations of the lattice in a crystal in the same fashion as photons 

are related to the vibrations of the electromagnetic field. 

For photon (phonon) 
2

h
p k k


   so 

 
2

3
( ) 4

2

aV
g k dk k dk


 * 

Since k
c


 , then 

 
2

3 3
( ) 4

2

aV
g d d

c
   


  

In case 2   , we can have 

2

3
( ) 4

aV
g d d

c
     

In case 
2

c c
d d  

 
   , we can get 

5
( ) 4

aVc
g d d   


  

*In 2-dimensios on can find 

 
2

( ) 2
2

aA
g k dk kdk


                     , A = surface area = 

x yL L  

Example: Find the area in k-space 

 
2 2

2

0

2
2

k
kdk d k



  
 

  
 

   

 

What about 1-dimension?  

 

More on Density of states (Note that 4d   ) 

   
2

3 3

1
,            sin

2 2

V
dn d d p p dpd d d d   

 
      

So that 
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   

 

2
2

3 3

3

2 2

2

dn V dp V p
p d d

dE dE v

mV
kd


 



    

 
 

Note that: 

 

2 2 2

,
2 2

p k dE p
p mv k E v

m m dp m
        

     
2 2 2

3 3 3
     ,       

2 2 2

V V V
dn p dp d k dk d d d kc

c
  

  
        

 

 

 

 
 



Prof. Dr. I. Nasser                      MB_distribution             Phys430, T172                                             13-Feb-18 

 

16 
 

PARTITION FUNCTION AND ITS APPLICATIONS 
 

The single particle partition function expressed as: i

i

z e
 

  involves the sum over the 

distinguishable microstates of the whole system. It may also be expressed as a sum over the energy levels of 

the systems and the degeneracies of the levels,
ig , i

i

i

z g e
 

 . When the energy levels are closely 

spaced relative to the thermal energy of the system it is possible to transform the sum into an integral as: 

( )z g e d    , 

where ( )g   is the density of states. 

   A more general form of the partition function may be written as: 

3 3

3

1
( ) N N

N
Z g e d d

h

  p p r ,                       
2

2

p

m
    

where N is the number of particles, p the momentum and r the position. For classical particles (localized 

and distinguishable) the partition function for each of the N particles is identical. Z = zN, is the relationship 

between the single-particle partition function and the partition function for the whole system for localized 

weakly interacting systems. For indistinguishable (non-localized) particles, Z = zN/N!. 

The meaning and the properties of the partition functions are: 

1- Partition function is the sum-over-states. 

2- It is of the utmost importance in statistical thermodynamics. 

3- It depends on the temperature and on the parameters that determine the energy levels and quantum 

states. 

4- It is proportional to the volume of the gas. 

5- Finally ( , , )Z f T N V  

The Maxwell-Boltzmann distribution is therefore: 

( )
i i

i i
i i i

i

Ng e N e
N f N NP

z g z

   


 

     , 

where )( if   is the probability of occupation of a single state belonging to the ith energy level.  

 The average value of a physical quantity will be expressed as:  

1 1
( ) ( ) i

i i i i

i i

f N f g f e
N z

   
    

 For continuous distribution one can has:  
















deg

e
N

g

N
f

i

i

)()(

)(
)(  

In Brief:   
i

i
i

Ng e
N

z

 

      , i

i

i

Z Uz
z g e

N

 



 
   


  ,  

21 1
[ln( )] [ln( )]i

i i i i B

i i

z
E N g e z k T Z

z z T

 
 

   
      

  
   

ln ln ,B B B B

V

S
S k W k N z k U k

U
 

 
    

 
.          
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Helmholtz free energy :   




























T

F

T
T

T

F
TFTSFUTSUF

V

2
 

Use       

2

2

1 1
, B

B

T
k T

kT T k T T T




 

    
      

    
 

Then 

2 2

2

ln( ) 1
[ ]

F z F
U T T

T T kT T 

     
          

     
 

spln FF kT Z z e      

 

Thermodynamic Variables 

The following relations could be easily deduce using the PF:  (use sp

States All levels

 i i

iz Z g e e
   

    ) 

 

Quantity Symbol Formula 

Partition function z  
sp

States All levels

 i i

iz Z g e e
   

               

Helmholtz free energy F lnBF k T z   

Entropy 

NVT

F
S

,













   

,

ln ln
lnB B

VV N

T z z
S k k T z

T T

     
       

       

 

Equation of state 

NTV

F
P

,













  

,

ln
B

T N

z
P k T

V

 
  

 
 

Chemical potential  

VTN

F

,













  

,

ln
B

V T

z
k T

N


 
   

 
 

Internal energy  

TSFU   
2

,,

ln ln

V NV N

z z
U kT

T

   
     

   
 

Gibbs’ function 

NTV

F
VFPVFG

,













  

,

ln
ln

ln
B

T N

z
G N k T z

U


  
    

  
 

Enthalpy H=U+PV 

, ,

ln ln

ln ln
B

V N T N

z z
H k T

T V

     
     

     
 

Heat capacity 

NVNV

V
T

F
T

T

S
TC

,

2

2

,

























  

2

2

ln ln
2V B

V V

z z
C k T T

T T

    
    

     
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IDEAL GAS 

For the ideal gas, the Partition function could be calculated with different methods and give you the same 

answer. For an ideal (Boltzmann) gas consisting of N-distinguishable molecules of mass m, the single 

particle partition function has the following form: 





0

)(   degz , 

where 
3/ 2 1/ 2

3

4 2
( )

V
g m

h


  , is the density of states. Using the standard integrals, one can find 

3 / 23 / 2

2 2

0

2 2
( ) Bmk T m

z g e d V V
h h

  
 





   
     

   
 . 

This is the partition function for a gas under the assumption that the energy levels are so closely spaced that 

they form a continuum. For N distinguishable particles, we have NzZ  . 

 

Quantity Formula 

Partition function 3 / 2

2

2
N

N N Bmk T
Z z V

h

 
   

 
 

Helmholtz free 

energy 
2

3 2
ln ln ln

2
B

m
F kT Z Nk T V

h





  
      

  

 

Entropy 

0

,

3
ln ln

2
B

V N

F
S Nk V T S

T

   
          

* 

Equation of state 
NRTPV

V

N

V

Z
P

NT

















1ln1

,

 

Internal energy 

,

ln 3 3

2 2
B

V N

Z N
U k T

 

 
     

 
 

Heat capacity 

,

3

2
V B

V N

U
C Nk

T

 
  

 
 

      
*Comment for the Entropy of the Ideal gas: 
The equation, 

                     
3

ln ln
2

B oS Nk V T S
 

   
 

,                                              (**) 

is known as the Sackur-Tetrode equation for the entropy of a monatomic gas. Here  
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 is a constant independent of T, V, or N. Recalling that s = S/n, Nk/n=R, we have 

                     ov svRTcs  lnln ,                                                  (***) 

which has obtained earlier in thermodynamics. 

Comments on Sackur-Tetrode equation: It is not correct and turns into the following difficulties:  

1- S  is not additive because the volume V (and not V/N) occurs in the argument of the logarithm. This 

prevents us from dividing the system in two parts and writing S=S1+S2.This difficulty is not so easily 

to handle classically. In fact, it leads to the famous Gibbs paradox. 
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2- It is not valid down to absolute zero since S does not approach zero as 0T  . Such contradiction 

would not have occurred if we had used the original summation of Z. The replacement of sum by 

integral in Z is not justified near the absolute zero. At 0T   the lowest state (ε = 0) becomes 

important, while its contribution has been excluded altogether in the integration. In classical 

statistical, since p is a continuous variable and the size of the cell in the phase space is not fixed, we 

cannot estimate the third law. For this we have to go to quantum mechanics. 

 

 

 

Equipartition theorem: For every degree of freedom for which the energy is a quadratic function 

 2( )z az  , the mean energy per particle of a system in equilibrium at temperature T is kT/2. 

H.W.    Prove that                        kT
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Standard integrals  
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