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CHAPTER 12 SEC. 1,2,3,4 

STATISTICAL THERMODYNAMICS 

INTRODUCTION  

Objectives 
1. Be able to explain what statistical mechanics is and why it is important.  

2. Basic tools of Statistical Mechanics  
 

Introduction to Statistical Mechanics 

Discussion on statistical mechanics (SM) often begins with thermodynamics. Thermal 

energy (heat) transferred to a molecule does not change the nature of the available energy levels, 

but it does change which energy levels are occupied by the electrons: 

 
 Within a macroscopic material sample (made up of Avogadro’s number of atoms), the total 

internal energy is still theoretically quantized, though the energy levels may be very close 

together (so close that we cannot really measure the quantization).  At finite temperature, 

each atom’s electrons are excited to some distribution among the available energy levels; 

with increasing thermal energy in the system, the electrons are able to access higher and 

higher energy levels.  One of the main objectives of statistical mechanics is to predict how 

the energy levels are occupied for a given model of how a system responds to thermal 

energy. 
 

 The reason is that SM provides a microscopic basis of thermodynamics and meaning to such 

terms as entropy and free energy which is otherwise rather hard to understand. Another 

important reason, not often emphasized enough, is that thermodynamics by itself is not very 

useful because it does not have the capacity to generate numbers needed to understand 

experiments. For example, the first two laws define all sorts of relations between 

thermodynamic variables and functions, but do not tell you how to calculate them. This 

deficiency partly the reason for the third law which tells that entropy of a perfectly crystalline 

solid is zero. Remember that this law is used to obtain entropy and enthalpy and then free 

energy, by integrating temperature dependent specific heat all the way from zero Kelvin. 
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Q1: What is Thermodynamics (TD), Quantum mechanics (QM), and Statistical Mechanics 

(SM)? 

Thermodynamics deals with the macroscopic properties of matter, e.g. (P, V, T). 

Thermodynamics is not dependent on the fundamental nature of matter. That is, thermodynamics 

is valid whether matter is made up of atoms and molecules or whether matter is made up of some 

kind of continuum fabric. 

  

Quantum mechanics deals with the behavior of matter on the microscopic scale. In quantum 

mechanics we calculate the energy and behavior of a few atoms or small molecules. Most 

calculations are performed at 0 KT  . We can't get the macroscopic properties (e.g., the 

equation of state, etc.) from QM. 

  

 Quantum mechanics: stationary state of a system is characterized by a wave function 

ψN (r1,...,rN ) and energy EN : microscopic state. 

 

 

Statistical mechanics is a bridge between quantum mechanics and thermodynamics. We seek to 

use statistical mechanics to compute macroscopic properties from the quantum mechanical 

information about the atoms and molecules of interest.  

 

 Statistical Physics: Macroscopic state with total energy E , volume V and N particles. 

Statistical weight ( , , )E V N  - total number of microstates which correspond to the macrostate 

E,V,N . 

 

Q2: Why study statistical mechanics?  

Consider an example: We have used equations of state (EOS). What are they? They give you a 

method of calculating one of (P, V, T) given any two of them. Usually EOS are cast in some 

analytic functional form. How do you get EOS?  

I. Guess some functional form, P = f (V, T). e.g., van der Waals made the guess that 

P=RT/(V-b) – a/V2.  

II. Measure as much PVT data as you possibly can for a specific fluid.  

III. Regress the parameters in the EOS in some least squares fashion. e.g., find a and b the van 

der Waals EOS for the fluid.  

Do you now have complete information? How about U, H, S, etc.?  

What happens if you want to find the EOS of a different fluid? For example, you did the above 

for propane, now you want the EOS for H2O. In many cases you need to go back to the 

beginning, i.e., guess a new functional form. This is because you can't fit propane and water with 

the same functional form.  

Problems with the above process:  

i. Very time consuming and very expensive.  

ii. Have to start all over again for many new fluids.  

iii. Extrapolation outside the region of parameter regression is not valid. Extrapolation often 

gives unphysical results. For example: What happens in the van der Waals EOS if V = b?  

iv. This process does not give you any physical insight about why the fluid behaves as it does, 

or how to systematically improve the EOS.  

v. You don't know anything about many of the other properties.  
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Is there some way we can get at the EOS from a fundamental approach?  

If matter is truly composed of molecules, then it must be the interactions among these molecules 

that give rise to the macroscopic observable behavior.  

 

 

Coin-Tossing Model 

 

We assume the coins are regular and distinguishable (by a date, or color). This simulates the 

particles in a lattice, whose location distinguish them. This would be the case for a crystalline 

solid, as an example. But for other cases, such as molecules in a gas, the particles are identical 

and indistinguishable and the number of microstates available to the assembly will be 

correspondingly fewer. We need to develop statistics for both situations. 

 

Lemma I: The number of permutation (the total number of ways in which assignments can be 

made) of N distinguishable particles is N! 

 

Example: For the three balls a, b, c,  (3!=6) we have    abc, acb, bca, bac  cab, cba. 

   

Lemma II: The number of ways of assigning N distinguishable particles into r distinguishable 

cells so that there are N1,......,Nr particles in the respective cells is:  

1

!

!
r

i

i

N

N








.                                                                           (I) 

Example: For the three balls a, b, c,  (3!=6) a, b, c, distributed in two cells with capacity 2 and 1 

3!/(2!1!)=3 way.  

 

Table 1: two coins 

Description 

 

True 

Probability 

Thermodynamic 

probability 

Microstate Macrostate 

specification 

Macrostate 

Label 

k
kp





 

1 2

!

! !
k

k k

N

N N
 

Coin2 Coin1 
2kN 1kN k 

Ordered 1/ 4 1 H H 0 2 1 

Disordered 

Or 

Totally random 

2 / 4 

 

2 
 

T 

H 

H 

T 

1 

 

1 2 

Ordered 1/ 4 1 T T 2 0 3 

3

1

1 2 1 4.k

k




       

 

max

! 2!
2

( / 2)!( / 2)! 1!1!

N

N N
     
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Table 2: Four coins 

 
 

Region 

True 

Probability 

Thermodynamic 

probability 

Microstate Macrostate 

specification 

Macrostate 

Label 

k
kp





 

1 2

!

! !
k

k k

N

N N
 

Coin4 Coin3 Coin2 Coin1 
2kN 

1kN k 

Ordered 1/16 1 H H H H 0 4 1 

 

 

 

 

Disordered 

Or 

Totally random 

4 /16 

 

4 
 

T 

H 

H 

H 

H 

T 

H 

H 

H 

H 

T 

H 

H 

H 

H 

T 

1 

 

3 2 

6 /16 

 

6 

 

 

 

T 

H 

T 

H 

H 

T 

T 

H 

H 

T 

T 

H 

H 

T 

T 

H 

T 

H 

H 

T 

H 

T 

H 

T 

2 

 

2 3 

4 /16 4 T 

T 

T 

H 

T 

T 

H 

T 

T 

H 

T 

T 

H 

T 

T 

T 

3 1 4 

Ordered 1/16 1 T T T T 4 0 5 

5

1

1 4 6 4 1 16.                      (2)k

k




         

              (3)
jk k

k k
j jk jk k

k k

N

N N N P




  
 


   

         1

1
4 1 3 4 2 6 1 4 0 1 2

16
N                   (4) 

1 2 4N N   

max

! 4!
6

( / 2)!( / 2)! 2!2!

N

N N
     

 

max

! 10!
252

( / 2)!( / 2)! (5)!(5)!

N

N N
   



Prof. Dr. Ibraheem Nasser                    STM1                              February 7, 2018 

 

5 

 

Properties 

 

1- The number of microstates leading to a given macrostate is called the thermodynamic 

probability" " . It is the number of ways in which a given configuration can be 

achieved. This is an "unnormalized" probability, an integer between zero and infinity, 

rather than a number between zero and one. 

2- Multiplicative property  

1 1 1 1 2 2 2 2( , , ) ( , , )E V N E V N    

Example: 
1 1 1( 4) ( 2) ( 2)p N p N p N    . 

Example: ( 4) ( 2) ( 2) 2NN N N        .  

 

3- By increasing the number of coins, the maximum value of the thermodynamic probability 

max

!

( / 2)!( / 2)

N

N N

 

 
 

 increases astronomically. 

 
 

4- The “order region” almost never occurs; i.e. max   compare to the disorder (totally 

random region) spike, centered with  max . The distribution behaves like a function.   

5-  The total number of microstates is very nearly equal to the maximum number: i.e.  

                                                   max     

6- At maxw  we can have the particular set iN , corresponding to the most probable 

macrostate. 

7- To calculate the most probable state, one has to calculate the slope of the function at the 

peak and equate it to zero. 

8- The most “disordered” macrostate is the state with the highest probability. 

9- The macrostate with the highest thermodynamic probability will be the observed 

equilibrium state of the system. 

10- The statistical model suggests that systems tend to change spontaneously from states with 

low thermodynamic probability to states with high thermodynamic probability. 

11- The second law of thermodynamics is a consequence of the theory of probability: the 

world changes the way it does because it seeks a state of higher probability. 

12- The most probable macrostate is the equilibrium state of the assembly. This is the 

fundamental problem of statistical thermodynamics- to determine the equilibrium state of 

the system.  
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Finally, we are looking for probability density function!! 

 

We will define the entropy ( S ) that measure the disorder of the system through the Boltzmann’s 

relation:       

                         lnBS k  , 

where Bk  is the Boltzmann's constant and w is the actual number of microstates for a given 

system.  

--------------------------------------------------------------------------------- 
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Way to infer the above expression for the entropy. Problem 12-9 

I- Suppose that   S f  . For a system which consists of two subsystems 1 and 2 

 
 f  is a single-valued, monotonically increasing function (because S increases monotonically) 

 

With the following two important properties: 

1- Multiplicative of   

12 1 2 1 2 1 2( ) ( ) ( )f f f                        (I) 

2-  additive (extensive) of S   

12 1 2 1 2 1 2( ) ( ) ( )S S S f f f                     (II) 

Differentiating (II) with respect to 
1  (and with respect to

2  ), we get 

' ' ' '

2 1 2 1 1 1 2 2( ) ( ),  and ( ) ( )f f f f         

So that  

         ' '

1 1 2 2( ) ( )f f                                                   (III) 

Since the left hand side of (III) is independent of 
1 , and the right hand side is independent 

of 2 , each side must be equal to a constant , independent of both 1 and 2 .  It follow that 

'( ) /Bf k    and hence 

             ( ) ln constantBf k                                         (IV) 

Substituting from (IV) into (II), we find the constant of integration is zero. 

------------------------------------------------------------------------------------------- 

II- Different approach with the help thermodynamics’ laws 

Physical significant of  , ,N V E U   

(I) Consider two systems  1 1 1 1, ,A N V E  and  2 2 2 2, ,A N V E , which are separately in equilibrium 

and have  1 1 1 1, ,N V E and  2 2 2 2, ,N V E . If the two systems are in contact with the only 

constrain 

1 2  constantE E E    

 
FIGURE 1 Two physical systems being brought into thermal contact. 

then 

       1 2 1 1 2 2 1, ,E E E E E E    , say. 
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Q1. At what value of 
1E  will the composite system in equilibrium? 

A1. This will happen at a value 
1 1E E , which maximizes the number  1,E E . 

If  1,E E  is maximum, then 

                     (A) 

From thermodynamics we know that in such a situation, thermal equilibrium is attained when the 

temperature of the two systems becomes equal, 
1 2T T . In thermodynamics, temperature is 

defined as 

,

1

V N

S

T E

 
  

 
 

Thus the condition of thermal equilibrium should be 

1 2

1 2

S S

E E

 


 
                                                                         (B) 

Comparing (A) and (B) we infer 

lnS    

Since the relation between thermodynamics and statistical mechanics should be fundamental, 

Boltzmann postulated that the proportionality constant in the above equation should be a 

universal constant, independent of any particular system. This constant is Boltzmann's constant 

Bk . Thus we obtain the expression for entropy, which is of central importance in statistical 

mechanics: 

lnBS k                                                                   (C) 

---------------------------------------------------------------------- 

(II) Let us consider there is a transfer of energy E  from A1 to A2. So, the corresponding change 

in the entropy of the composite system would be 

 
According to the second law of thermodynamics, the total entropy S must increase, or at best stay 

constant, in the transfer process. If E  is positive, we must have 

 
Define the following parameters: 

 
where lnBS k  . To determine the physical meaning of the parameters   and   , we make 

use of lnBS k  in the equation  
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. . .N V N E E V

S S S
dS dE dV dN dE dV dN

E V N
  

       
          

       
 

 and the basic formula of thermodynamics, namely 

 
where, P and   are the thermodynamic pressure and the chemical potential of the system. It 

follows that 

,
B B

P

k T k T


     

 

(III) By relaxing one more constrain, i.e. 1 2  constantV V V   , and define 

 
one can have 1 2P P  (Mechanical equilibrium) with 1 2T T .  

---------------------------------------------------------------------- 

(IV) By relaxing the other constrain, i.e. 1 2  constantN N N   , and define 

 
one can have 

1 2  , (Concentration equilibrium) with 
1 2T T .  

---------------------------------------------------------------------- 

(V) Finally, if the exchange is such that all the three (macroscopic) parameters become variable, 

then the conditions of equilibrium become 

1 2T T ,    1 2P P ,    and      1 2  . 

Using  

 
the intensive parameters, viz. temperature, pressure and chemical potential, are given by 

 
 

Alternatively, we can write 

 

 

 
In deriving these formulae we used the chain rule via 

 



Prof. Dr. Ibraheem Nasser                    STM1                              February 7, 2018 

 

10 

 

The other thermodynamics functions could be calculated as: 
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What are the properties of the entropy?  

 

Answer: The entropy has the following properties: 

1- The entropy for a simple system is  

i-          continuous,  

ii- single-valued,  

iii- differentiable,  

iv- homogeneous-first-order function of the extensive parameters (N,V,U), and  

v- Monotone increasing in U. 

2- The entropy of a composite system is the sum of the entropies of the constituent 

subsystems: 
i

iiii UVNSUVNS ),,(),,( .  

3- The entropy should be maximum at equilibrium. 

4- The entropy of a simple system approaches zero as 0T , or .0












S

U
 

----------------------------------------------------------------------------------- 

POSTULATE: If we can understand the microscopic interactions we can predict the 

macroscopic behavior. This is the goal of statistical mechanics. Statistical mechanics relies on 

determining the most probable distribution of quantum microstates in macroscopic system. 

 

1- For a macroscopic system, define N, V, and U as the Number of particles, volume and the 

total energy of the system respectively. The thermodynamics limit defined as V  and 

N , then the particle density (v = N/V ) is a fixed quantity at a preassigned value. 

 

2- The microscopic states are defined by two group of parameters 

a- ,...., 21   These discrete energies possessed by a single particle, which obtain by solving 

the wave equation.  

b- N1, N2, …. being the number of particles in this energy state respectively. Hence (for non-

interacting particles) we can apply the constrains  


i

iNN ,  

and  


i

iiNU   

where Ni is the number of particles with energy i .  

           
Classically is contiuous

Quantum is discrete
i

U

U



 


    , (1) 

As Uji   , we might regard U as almost a continuous variable. The specification of 

the actual values of the macroscopic parameters N, V, and U (i.e. T ) then defines a particular 

microstate of the given system.  

 

Notice that: at the molecular level there will be a large numbers of different ways in which the 

total energy of the system can be distributed among the N particles constituting it. Each of these 

(different) ways specifies a particular microstate, or complexion, of the given system. 

--------------------------------------------------------------------------- 
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In conclusion: The whole theory of statistical mechanics is based upon the following postulates: 

  

A- For each complexion there is a probability “ ” that measure the number of ways in which 

we can produce it under the conditions: 


i

iNN ,  

and  

             
i

iiNU   

B- The most probable distribution is that of maximum probability: 

ln
0

iN





 

C- Entropy (S) measure the disorder of the system through the relation:       

lnBS k  , 

where Bk  is the Boltzmann's constant and   is the actual number of microstates for a given 

system. 

------------------------------------------------------------- 

Solved examples 
Example: Consider an ensemble of N =18 distinguishable molecule systems of fixed energy U = 

6 ε and a fixed volume such that the only individual molecule energy states are fixed as 0, ε, and 

2 ε. If Ni is the number of molecules in state i (=0, 1, 2), show by explicit calculation that the full 

ensemble average and the average in the most probable distribution for (Ni/N) are practically 

identical. 

Solution: With the following constrains: 

i- ,1821  NNNo  and 

ii-  6)2()0( 21  NNNo   

we have the following distributions: 

 
 

State Energy (Numbers) Macrostates 

a b c d 

2  22 N  3 2 1 0 

1  1N  0 2 4 6 

0  0 oN  15 14 13 12 

 
Macrostates

1

!/ !
r

i

i

N N


   
816 18,360 42,840 18,564 

 

With  80,580a b c d          
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      Distribution “c” is the most probable, and even in this few-molecule case, ln 11.3  and 

ln 10.7
c

  do not differ greatly and both are of order N = 18. The number of distribution 

( 4M  ) is also of order N. 

For the state “c”, the most probable distribution is given by: 

.056.0
18

1
,222.0

18

4
,722.0

18

13 2
2

1
1 

N

N
P

N

N
P

N

N
P o

o  

The full ensemble average may be calculated as follows: The total number of molecules (  ) in 

all the replicas of the system is given by: 18 1,450,440     of which the number in the zero 

state are:  

(816)(15)(1) (18,360)(14)(1) (42,840)(13)(1) (18,564)(12)(1)

1,048,968.

d

o i oi i

i a

N N P


    



  

The inclusion of the factor ( 1iP  ) is due to the equal a priori probability. The weight factor 

i  differ because of the great difference in the number of micromolecular ways in which these 

modes of occupation can be realized. Finally, 

1 21,048,968
0.723, similarly  0.220, and  0.057.

1,450,440

oN N N
   

  
 

These ensemble results agree with the most probable results. 

---------------------------------------------------------------------- 

HW 1: Consider an ensemble of  N = 4  distinguishable molecule systems of fixed energy U = 12 ε 

and a fixed volume such that the only individual molecule energy states are fixed as 1, 2ε, 3 ε, and 

4 ε. If Ni is the number of molecules in state i (= 1, 2, 3, 4). Determine the number of possible 

macrostates and find the number of microstates associated with the macrostates. 

Solution: the following constrains: 

,44321  NNNN  and  12)4()3()2()( 4321  NNNN  have the following 

distributions: 

State Energy Macrostates 

a b c d 

3 4ε 2 2 1 0 

2 3ε 1 0 2 4 

1 2ε 0 2 1 0 

0 ε 1 0 0 0 

 
Macrostates

1

!/ !
r

i

i

N N


   
12 6 12  1 

----------------------------------------------------------------- 

HW 2: Consider an ensemble of N = 4 distinguishable molecule systems of fixed energy U = 10 

ε  and a fixed volume such that the only individual molecule energy states are fixed as 1, 2ε, 3 ε , 

and 4 ε . If Ni is the number of molecules in state i (= 1, 2, 3, 4). Determine the number of 

possible macrostates and find the number of microstates associated with the macrostates. 

 

Solution: the following constrains: 

,44321  NNNN  and  10)4()3()2()( 4321  NNNN  have the following 

distributions: 
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State Energy Macrostates 

a b c d e 

3 4ε 2 1 1 0 0 

2 3ε 0 1 0 3 2 

1 2ε 0 1 3 0 2 

0 ε 2 1 0 1 0 

 
Macrostates

1

!/ !
r

i

i

N N


   
6 24 4 4  6 

--------------------------------------------------------------------------- 

HW3: Consider an ensemble of  N = 6  distinguishable molecule systems of distributed in the 

energy levels given by the expression:  
2010  Joule,               0,1,2,3,4i i i     

With the total energy 
204 10  JU    

At room temperature, check the following table: 

 

20(10 J)F  20(10 J)U  23 1(10 JK )S   k  0 1 2 3 4, , , ,n n n n n k 
3.26 4.00 2.47 6  5,0,0,0,1 1 
2.60 4.00 4.70 30  4,1,0,1,0 2 
2.89 4.00 3.74 15  4,0,2,0,0 3 
2.32 4.00 5.65 60  3,2,1,0,0 4 
2.89 4.00 3.74 15  2,4,0,0,0 5 

 

What is your conclusion? 
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A- Equal a Priori Probability: a priori from the Latin, meaning ``conceived beforehand''. 

Quantum states that have the same energy have the same probability. To a given 

macrostate of the system there are in general correspond a large number of 

microstates, and it seems natural to assume that at any time t the system is equally 

likely to be in any one of these microstates. The quantity ( ; ; )N V E  will be defined 

as the actual number of possible microstate. 

 


