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Quantum Theory of Solids (Chapter 16.1, .2, .3) 
 

16.1 Introduction:  

The energy of the solid is mainly made up of vibration of the atoms along the 3-axis. The translation kinetic 

energy of its center of mass is neglected. So, classical approach to specific solids predicts that 
vC  is constant at 

1
6 3

2
R R

 
 

 
 (equi-partition principle). This is known as Dulong–Petit’s Law. This law works very well at high 

temperature region. But in early twentieth century, low temperature measurements revealed an interestingly 

different story. 

 
Experimental temperature dependence of 

vC   for solids 

However additional measurements showed that the specific heat of solids varies with temperature, decreasing to 

zero as the temperature approaches zero. This behavior cannot be explained by the "freezing" of degrees of 

freedom when the temperature is decreased since the specific heat varies gradually with temperature and does 

not exhibit abrupt jumps by any multiple of R/2 (in contrast to the specific heat of a diatomic gas). Even at room 

temperature the specific heat capacities of certain substances such as beryllium, boron, carbon, and silicon were 

found to be much smaller than 3R. Quantum statistics is needed to explain these discoveries. 

 

16.2 EINSTEIN'STHEORY OFTHE HEAT CAPACITY OFASOLID:  
In order to explain non-classical, low temperature behavior of specific of solids, Einstein proposed a simple 

quantum model and assumes the following: 

 

1- The crystal consists of atoms which may be regarded as identical and fixed at the lattice points. 

2- The atoms in a crystal vibrate independently of each other about fixed lattice points. 

3- These vibrations are all assumed to be simple harmonic, all with the same frequency. 

4- The vibrations of any one atom can be split into three independent vibrations one along each coordinate 

axis.  

Hence a solid containing N atoms is equivalent to 3N  harmonic oscillators vibrating independently of each 

other all with the same frequency, it is called oscillator frequency  . The value of this frequency depends on 

the strength of the restoring force, k , and the reduced mass  , where 1

2

k


 
 . Consider any simple solid 

with N atoms. These atoms are free to vibrate about their equilibrium positions. (Such vibrations are called 

''lattice vibrations''). The total energy of the system is written as 
23

2

1

1

2
,                     

2

N
i

i i i

i
i

p
E E E k q



                                                          (1) 

Thus the total energy is considered as that of 3N independent one dimensional harmonic oscillator. If the 

temperature T is high enough so that classical description is applicable, then the application of the equipartition 

theorem allows one to conclude that the total mean energy (internal energy of the crystal) is 
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1

2
6 3 3         (if  )B B aU N k T Nk T RT N N

 
    

 
 

Thus the specific heat at constant volume becomes 

1 13 25  J mole K       (Douling-Petit)V

V

U
C R

T

  
   

 
 

Of course, the preceding arguments are not valid for solids at appreciably lower temperatures, which required 

that 
0

lim 0V
T

C


 . To do so, Einstein introduced the following assumptions: 

a- All atoms in the solid vibrate with the same angular frequency
E ( or frequency 

E ), which implies 

2

i Ek m for all terms i  in equation (1). 

b- The mole of solid is equivalent to an assembly of  3 aN  independent one dimensional harmonic 

oscillators, which could be easily treated by quantum mechanics with the following results: 

Using the quantum energy levels in the form 
1 1

2 2
( ) ( )n E En n h      , 

the single particle partition function will be: 

 

2

3

3

2

,                         / 2,
1

3
ln 3 ln 1

1 2

n

E

a

Ea
n

N
a

hN E

a

e
z e a h

e

N he
Z z Z N e

e

 

 

 

 











  


 
      

 


 

Internal energy and heat capacity of the Einstein solid 
 

 Now that we have the partition function, it is straightforward to determine thermodynamic quantities for 

the Einstein solid.  First, let’s derive the internal energy: 

ln Z
U




 


                                                                  (2) 

 
 
   

13 33 3 3

2 2 21 1 1

E
E

E E E

hh

E E
Eh h h

eNh NhNh e
U Nh Nh

e e e

  

     

 
 

  
       

    

                                             (3) 

 Using the internal energy, we can calculate the heat capacity of the Einstein solid: 

 

   V

V

dU
C

dT

 
  
 

                                                               (4) 

 Since 1/ Bk T   
2

1

B

d

dT k T


    

 Thus we can write the derivative 
dU

dT
 in the more convenient form: 

2

1
V

V BV V

dU dU d dU
C

dT d dT k T d



 

      
         
      

                                                           (5) 

 
 

   
 

2 2 22

2 2
3 3

1 1

E E

E E

h h

V B E B E
h h

e e
C Nk h Nk h

e e

   

   
    

 
                                      (6) 
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 The Einstein solid heat capacity is plotted below as calculated for Diamond, compared to the 

experimentally measured heat capacity- and we see quite good agreement over a broad range of 

temperatures.  In particular, at high temperatures, we see the limiting behavior of the heat capacity is: 

   
 

 
 

 

2 22

2 2

1 ... 1
3 3 3 3

1 ... 1

E

V B E B E B

E E

h
C T Nk h Nk h Nk R

h h

 
   

   

 
    

  
                                (7) 

              correctly predicting the limiting value of VC  observed experimentally for many solids. 

Einstein Temperature 

Rewrite equations 3 and 6 one has: 

 

2

2 2

2
2

1 1
3 ,   

2 1

3
1

E a

a

E
V

a

U R
e

e
C R

T e

 
   

 

 
  

  

 

where we introduced the characteristic ''Einstein temperature'' E
E

B

h

k


  . 

Asymptotic heat capacity 

 At the regions where ET   and  ET   we have: 

 

2

/

3      

3       E

E

V TE
E

R T

C
R e T

T



 


   
  

 

                                                       (8) 

Thus the specific heat should approach zero exponentially as 0T  .  

 

 
 

 

 PHYSICAL INTERPRETATION 

Experimentally the specific heat approaches zero more slowly than this, indeed 3

vC T  as 0T  . The 

reason for this discrepancy is the crude assumption that all atoms vibrate with the same characteristic frequency. 

In reality this is not the case (even if all the atoms are identical). Nevertheless, the crude assumptions of 

Einstein approximation give a reasonably good description of the specific heats of solids. It also makes clear the 

existence of the a characteristic parameter E  which depends on the properties of the solid under consideration. 

The normal modes of the crystal are its various standing waves of free vibration whose lowest 

frequencies are in the sonic range (wavelength = half or a third or a tenth of crystal size) and highest frequencies 

are in the infrared (wavelength = size of interatomic distance). Sometimes the quantized standing waves are 

called phonons. Then in  is the number of phonons in the ith wave. The phonons are related to the vibrations of 

the lattice in a crystal in the same fashion as photons are related to the vibrations of the electromagnetic field. 
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16.3 Debye theory:  

The disagreement between Einstein’s result and the experimental data is due to the fact that Einstein’s 

assumptions about the atoms in a crystal do not strictly apply to real crystals. The main problem lies in the 

assumption that a single frequency of vibration characterizes all 3N oscillators. Debye improved on 

Einstein’s theory by considering the vibrations of a body as a whole, regarding it as a continuous elastic solid. 

He associated the internal energy of the solid with stationary elastic sound waves. Each independent mode of 

vibration (or normal mode) is treated as a degree of freedom. 

 

In Debye’s theory a solid is viewed as a phonon gas. Vibrational waves are matter waves, each with its 

own de Broglie wavelength and associated particle. The particle is called a phonon, with characteristics similar 

to those of a photon. If the interatomic distance is small as compared to the wavelength of elastic waves, the 

crystal can be regarded as a continuum from the point of view of the wave. Based on this idea, Debye based his 

theory on the following assumptions: 

 

a- The motion of each atom in a solid is not independent of the motions of its neighbors, as assumed by 

Einstein. 

b- The single frequency of Einstein should be replaced by a spectrum of vibrational frequency, with an 

upper frequency limit D , for the solid. D is called Debye (or cut-off) frequency. 

 
Transverse waves in a one-dimensional lattice. 

 

c- Solids regard as a gas of non-interacting particles (phonons), enclosed in a volume  V .  

  

Density of state: 

In momentum space, particles within a small volume
3

b

h

V
   are indistinguishable; therefore it 

represents an eigenstate. At any instant, all particles having the momenta between p  and p dp , will lie within 

a shell of volume 24 p dp . Therefore, the total number of eigenstates is given by 

2

3
( ) 4

V
g p dp a p dp

h
  

where that a is a constant related to the “polarization” of interested system, that is 

1 in case of bosons

2 in case of elecrtons and photons

3 in case of phononss in solids

a




 



 

For photon (phonon) 
2

h
p k k


   so 

 
2

3
( ) 4

2

aV
g k dk k dk


  
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Since k
c


 , then 

 
2

3 3
( ) 4

2

aV
g d d

c
   


  

In case 2   , we can have the density of states for photons in the frequency range    to d   is: 

2

3
( ) 4

aV
g d d

c
     

--------------------------------------------------------------------------------------------- 

2

3 3

2 1
( ) 4                                        (1)

v vt l

g d V d    
 

  
 

. 

Define 
3 3 3

s

2 1 3

v v v  t l

 
  

 
 , where sv is the average speed of sound in the material and the factor of 3 takes into 

account that there are 3 polarizations (2 transverse with speed vt
and 1 longitudinal with speed vl

). Note that in 

the Debye theory we assumed that the speed of sound is constant for all phonon frequencies, i.e. and we 

use the approximation 
3 3 3

s

1 1 1

v v vt l

  . In practice this is not the case, but the Debye theory is generally used at 

low temperatures, where only low frequency phonons are excited, and where the approximation that they all 

travel at the same speed is a good one. 

 

Debye cutoff: 

Since each oscillator of the assembly vibrates with its own frequency, and we are considering an 

assembly of 3N linear oscillator, there must be an upper limit to the frequency spectrum. The maximum 

frequency m  is determined from the fact that there are only 3N phonons: 

2

3

s0 0

3
( ) 3 , 4 3                                            (1.a)

v  

D D

g d N V d N

 

    
 

   
 

   

where we obtain for the cut-off frequency 
1

3 3

s3

s

9 3 3
 v                                        (2)

4 v  4
D

N N

V V


 



 
  

 
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Last equation shows that the maximum frequency 
1/ 3

D

N

V


 
  
 

is determined by the average interatomic spacing. 

Thus the structure of the crystal sets a lower limit to the wavelength 
1/ 3

D

V

N


 
  
 

; higher frequencies (shorter 

wavelength) do not lead to new modes of atomic vibration. Consequently, 
2

3

for  
9

( )                                      (3)             

0 for  

D

D

D

NV
g

 

 

 




 
 

 

----------------------------------------------------------------- 

Bose-Einstein distribution law 

It is given in the form: 

( )
  (4)

1
( ) ( )                                               

h

g d
dn

e
g f d

 

 
  


  

then the number of phonons per unit volume in the interval d  is given from (3) and (4) as: 
2

3

9
,      

                                (5)1

         0           ,     

Dh

D

D

N
ddn

e
V

 


  



 




 
 

 

----------------------------------------------------------------- 

Phonon energy 

If the above equation multiplied by the energy of photon E h  the result is the energy per unit volume, i.e. 

the energy density 
3

3

9
                                             (6)

1h

D

dn Nh
du h d

V e 


 


 


 

------------------------------------------------------------------------ 

Debye temperature 

By using the dimensionless parameters: 

,                                                                      (7)

,                                                          (8)

B

D D
D D

B

h
x h

k T

h
x h

k T T


 


 

 


  

 

where  

                                                                (9)D
D

B

h

k


   

is the “Debye's temperature”.  

-------------------------------------------------------------------------- 

Back to phonon energy 

Hence the internal energy per unit volume is 
3 3

0 3 3

0 0 0

9 9
                                           (10)

1 1

D D Dx

B

h x

D D

Nh Nk T x
u u du d dx

e x e

 

 





   

     

Where 
0u  is the zero energy, and will not affect the final expression of the specific heat.  
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------------------------------------------------------------ 

Heat capacity 
The specific heat is calculated by: 

   

3 4 4

2 23 3 2 3

0 0 0

9 9 9
                  (11)

1 1 1

D D Dxh x

B
V h h x

V D D B D

u Nh Nh h e Nk x e
C d d dx

T T e k T xe e

   

   

  
 

 

  
    

     
    

Define Debye's function  D x by: 

 

2 3

3

43
30

3

3 1
1 1

8 203

1
( ) 1 0

5

D

D

D D Dx

D x
xD

D

D

x x x T
x

D x dx
x e

O e x T
x

 


     


  

     


  

Asymptotic limits for energy and heat capacity 

At high temperatures, 1x   (Hint: 

         

4 4 4 3

2

(1 ) (1)

1 1 1 1 11

x

x x xx

x e x x x x

e x e x ee


  

    
) 

 
3

0 3

0

9
3 3                                     (12)

1

Dx

B
B D Bx

D

Nk T x
u u dx Nk TD x Nk T

x e
   

  

3 ,                         (Douling-Petit)V BC Nk                              (13) 

 

At very low temperatures, 1x  (Hint: 

   

4 4
4

2 2

1

x x
x

x x

x e x e
x e

e e

 


) 

 
4

3
4 4

4

0 23 3

0 0

15

9 9 3
                       (14)

51

x
xB B

B
x

D D D

Nk T Nk Tx e T
u u dx x e dx Nk T

x xe




 

  
     

 
   

 
4

3
4 4

23

0

4

15

9 12
                      (15)

51

x

B
V B

x
D D

Nk x e T
C dx Nk

x e






 
    

  
  

This is Debye's famous 3T -law'', which is valid at low temperatures. 

 

H.W. Check the above results. 

 

Table:  Debye temperatures of some material 

 

 

 

 

 

 

 

 

Substance (K)D  

Lead 88 

Mercury 97 

Silver 215 

Copper 315 

Iron 453 

Diamond 1860 
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Limitations of the Debye Model 

 

i. The Debye’s continuum model is valid for low frequencies (long wavelengths) only, i.e., only low 

frequencies are active in the solid. 

ii. The total numbers of vibrational modes are assumed to be 3N. This is difficult to justify as the solid is 

considered to be an elastic continuum which should possess infinite frequencies. 

iii. The cut off frequency is assumed to be the same for both longitudinal and transverse waves. This is 

again difficult to justify because different velocities of transverse and longitudinal waves should imply 

different values of cut off frequency for these waves. 

iv. According to the Debye’s theory, D  is independent of temperature, whereas actually it is found to vary 

up to an extent of 10% or even more. 

v. The theory does not take into account the actual crystalline nature of the solid. The theory cannot be 

applied to crystals comprising more than one type of atoms. 

vi. The theory completely ignores the interaction among the atoms and the contribution of electrons to the 

specific heat. 

 

 

 

 

 

The data for silver shown at left is from Meyers. It shows that the specific heat fits the Debye model at both low 

and high temperatures. 

--------------------------------------------------------------------------------------------- 
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16-6 The experimental value of Cv for diamond is 2.68 ×10
3
 J/kilmole·K temperature of 207 K. For diamond 

the Einstein temperature is 1450 K and the Debye temperature is 1860 K. Calculate 
Vc  at 207 K using the 

Einstein and Debye models and compare the results with the experimental value. 

Answer: 

Einstein Model: 
2

2

1

3


















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
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
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T
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E

e

e

T
NkC ,  so    

2
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



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

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
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
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 






T

T
E

AV
E

E

e

e

T
kNc  

or,  
2

K 207

K 1450

K 207

K 1450
2

3

2

2

1
K 207

K 1450
K)J/kmole 10314.8(3

1

3
















































 






e

e

e

e

T
Rc

T

T
E

V
E

E

 

cV(Einstein) = 1.11 ×10
3
 J/kmole·K 

This result is low. 

 

 

Debye Model:  Since D >> T, the low temperature heat capacity formula can be used.  
3

4

5

12












D

V

TNk
C


 ,  so  

3
4

3
4

5

12

5

12























DD

A
V

TRTkN
c


 

Then, 

343

K 1860

K 207

5

K)J/kmole 10314.8(12











Vc  

cV(Debye) = 2.68 ×10
3
 J/kmole·K 

This agrees with the experimental value. 

 


