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Laplace’s Equation
in
Spherical Coordinates

When one is dealing with a problem having axial symmetry, it is generally convenient to use
spherical polar coordinates (r, 0,¢) and my chose the axis of symmetry as the polar axis@ =0.
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H.W. Prove that the Laplace's equation, V>V =0, in spherical coordinates is given by:
1 0,,0V 1 0 ( : an 1 oV
—— (@’ —)+————|sind +—— — =
r°or or~ r-sinf 06 060 ) r sin" @ 0¢

1 © oV 1 &
H.W.P that: ——(r* —)=———V
rovetha r? or r or ) ror? o)

Separation of Variables
Use V (r,0,¢)=R(r)¥(6,¢), then equation (1) becomes:
2
Ei(rzaR + R i(sin@a\P)+ 2}.22 0 \2P=0
00 ) r-sin”" @ 0¢

r’ or or " r’sin@ 06
Divided Eq. (2) by RW/r?, one obtains
10, 6 ,0R 1 of(. ,0¥ 1 o*Y
——(r + sin @ +— —=
060 ) Y¥sin“ 0 0¢

Ror  or  Wsind o0

One can see that the first term is a function of » only while the remaining two terms are
independent of r . The above equation is satisfied if we take:

1 0,6 ,0R
—)=m

——(r
R or or
and
1 0 ( 8‘1’] 1 oVY
———| sinf +t— —=-m
Ysind 06 00 ) Ysin“ 0 0¢

where m 1is a constant. The solutions of egs. (4) and (5) take simpler forms, if one takes the
constant m as [(/ +1)where the constant / is still arbitrary. We get

16, ,0R
——(r —)=1(+1
R@r( Or) ¢+
And
2
‘1 i(sin@al}jj+ ,12 0 \ZP=—l(l+1)‘P
sinf@ 06 060 ) sin" @ 0¢

First we may find the solution of radial equation (4a). This may be expressed as
0,6 ,0R
— (" —)-I({+DR =0
» ( 2 )= +1)
Let us substitute R(»)=U (r)/r , Then eq. (4b) becomes
U (r) 1+

or? r?

U(r)=0

From the form of (4c) it is apparent that a single power of » (rather than of power series) will

satisfy it. One finds the solution to be
U(r)y=A4r" +£

i
r

= R(r)=Ar'+ B

1+1
7

where / is yet undetermined and 4 and B are arbitrary constants.
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H.W. Prove the above solution.
Answer: Substituting this expression in the differential equation for R (r) we obtain

Ar* or or
Therefore, the constant £ must satisfy the following relation:
k*+k =0(0+1)
This equation gives us the following expression for &

1 0 (rzﬂ(A,,k )j:k(k +1)=0(0+1)

1
-1+ —1£(20+1
‘= L£1+40(0+1) _ (20+1) o) oo
2 2
—(+1)
The general solution for R () is thus given by
R(r)=Ar'+ €+1
L

where A and B are arbitrary constants.

Now, we may try for the solution of (5a). Any solution of (5a) W is a function of # and ¢

and is called a surface harmonic of degree ‘/ °. Adopting the same technique let the solution of (5a)
be ¥ =0(0)D(¢) =OD, then (5a) will be:

2
_CD i[sinea—(aj+%a (12)+l(l+1)®CD:O (5b)
sinf 060 00 ) sin" 0 0¢
Dividing (5b) throughout by — rk one obtains
sin
. 2
Smei(smaa—@J 11+ Dsin? 0+~ P g (5¢)
® do 060 ddo

One finds that the variables are again separable. The first two terms in (5¢) are functions of & only
and the last term is a function of ¢ only. Let us take

2
LG_CIZJ =-m’® (Azimuthal) (6)
O o¢
Where m is constant. The solution of (6) is
D, (#)=Ce™™* (7)

where C is a constant. In order that potential /" be single valued, it is essential that

tim¢ zeiim (p+27)

e (8)
This is possible only if m is an integer. One can normalize the function @, by choosing the constant

27
in such way that J. ® @ d¢=1.For this to be satisfied, constant C must be equal to We
0

1
2z
must note that the functions @, are also orthogonal, i.e.

fo,008-5,
0
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Note: @ must be a periodic function whose period evenly divides 27, i.e. (@) =D (g+27), mis

+img

necessarily an integer and @ is a linear combination of the complex exponentials e

Legendre’s equation

Equation (5¢) could be simplified using Equ. (6), with Azimuthal symmetry m = 0, and
using the definition i = cos @, to prove that:

i——s1n6’i= -(1-
do du

1 d d? d d 2 d
sinede(sm j (=17 PP d,u(( ”)dyj
This implies that the function P satisfies the equation
d dP,
—[(1— ) (“)j (1P, (1)
du du

(We now have P, since for every ¢ we will have a different function.). The last equation is the

Legendre equation, and its solutions are the Legendre polynomials P, (x = cos0).

Combining the solutions for R (r)and P,(x) we obtain the most general solution of Laplace's
equation in a spherical symmetric system with azimuthal symmetry:

V(r,0)= Z(Ar + MjP(y)

Applications

1- r- dependent of

Example: Find the general solution to Laplace's equation in spherical coordinates, for the case
where V' (r) depends only on r.

Answer: Start with the Laplace's equation in spherical coordinates and use the condition
V'is only a function of  then:

ov. oV _
00 o
Therefore, Laplace's equation can be rewritten as
10 ,oV

o or
The solution V of this second-order differential equation must satisfy the following first-order
differential equation:

, 0V

r°——=a = constant

or
This differential equation can be rewritten as

a = % = v =-24p
or r r
where b is a constant. If "= 0 at infinity, such as Columbic potential, then b must be equal to zero,
and consequently
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y=-2
.

2- rand@ dependent of V' (Similar to Polar coordinates)

Consider a spherical symmetric system. Assuming that the system has azimuthal symmetry

(= Z—V =0), then Laplace's equation reduces to:

1 i(rz OR ()

—_— /(£ +1)= constant Radial equation
R or . —)={l(l+])= ( q )

and

L , ! i(sin Mj =—(({+]1) (Angular equation)
O(0) sind 060 00
Example 1: The potential V' (@) is specified on the surface of a hollow

sphere, of radius R. Find the electrostatic potential inside the sphere. Vo (0)
Answer: The system has spherical symmetry and we can therefore use the
most general solution of Laplace's equation in spherical coordinates:

V(r,0)= Z(Ar + jP(cos@)

Consider the region inside the sphere (# <R ). In this region B, =0,
otherwise V' (r,0) would blow up at » = 0. Thus:
V (r,0)=>Y A,r'P,(cos)

=0
The potential at » = R is therefore equal to

V(R,0)=> A,R'P,(cos0)=V ,(0)
=0
To calculate the constant 4, we are going to use the Fourier’s trick, with the orthogonality relation
of the Legendre polynomials 1.e.
ZA R’ j P,.(cos )P, (cos §) sin 0d 6 = j P,(cos @)V ,(0)sin6d O

=0

2
2041

S
This implies:

4, 2T j V() P,(cos0)sinOd &
Then
20417

V(r,0)= ZA r'P,(cos 0) = Z{ j V,(O)P, (cose)smede} P, (cos0)

:i2£+1DV 0P, (cos@)sm@d@}[R] P,(cos8)

=0
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H.W. Find the electrostatic potential outside the sphere. Here you will find 4, =0 and

B, =#R“l j V,(6)P,(cos6)sinOd 6
0

Example: The potential at the surface of a sphere, of radius R, is given by:

V,(0)=K cos(30)
where K is a constant. Find the potential inside and outside the sphere. (Assume that there is no
charge inside or outside the sphere.)

Answer: The most general solution of Laplace's equation in spherical coordinates is:
< B
V(r.0)= Z[Aﬂ 7 (P
=0

Part A: Consider the region inside the sphere (7 <R ). In this region B, =0, otherwise V' (,0)
would blow up at » = 0. Thus:

Vi (r,0) =2 A,r"P,(1)
=0
The potential at » = R is therefore equal to

V(R,0)= iAgR ‘P,(1) =K cos(36)
(=0
Using trigonometric relations we can rewrite cos(360) as:
8 3
c0s(30) =4’ =3 =4 1 (2P, () +3R, ()} | -3[P] =< P ()~ 2P (n)

Substituting this expression in the equation for V' (R, 8) we obtain
< : 8 3
V(R,0)=2ARP (1) =K [gf’a (1)-3P w}
=0

This equation immediately shows that 4, =Ounless /=1or {=3.1If / =1or ¢ =3then
3K 4 - 8 K

' sRT TSR
The electrostatic potential inside the sphere is therefore equal to

3K 8 K
Vins(r,é’):—gErPl (,u)+§Fr3P3 (u)

Part B: Now consider the region outsider the sphere (» > R). In this region 4, =0, otherwise

V (r,0) would blow up at infinity. The solution of Laplace's equation in this region is therefore
equal to:

2| B
Vout (r’e) = Z|: /,.fl :}Pﬂ (/u)
=0 ¥
The potential at » = R is therefore equal to (from part A)

FRO=3| 2 =K | SR )|
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The equation immediately shows that B, =0 except when /=1or ¢/ =3.1If /=1or ¢ =3then:
B = —EKRZ, B, =§KR4
5 5
The electrostatic potential outside the sphere is thus equal to

3K R*? 8K R*
Vo (1 9)——771’1(#)+?r—41’3(#)

H.W. Check if the V', (r,0) =V (r,0) at r =R..

Example: Find the potential outside two insulated conducting :
spheres, each of radius R, with the given boundary condition:
+V, 0<o<Z y
V (R,0)= 2 I Ry e

. T<o<rn L LV
° 2 -'..__-_'.':'-l:--.--. -, “-:--:::-:-':-.I'.
) . K

where V, is a constant. Assume that there is no charge inside or [
outside the spheres.

Answer: The most general solution of Laplace's equation in B \
spherical coordinates is: X

V(r,0)= Zpr+m}@)

Consider the region outside the sphere (» > R). In this region 4, =0, otherwise V' (r,0) would

blow up at infinity. The solution of Laplace's equation in this region is:

Vou (r,0) = Z{ M}P(u)

The potential at » = R is therefore equal to

Vo (r=R.0)= Z{ B/n}%(ﬂ)

Where

B, = Mz”fe“1 [V (R.0)P,(cos0)sin6d 6

/2
:%RMV {j P,(cos@)sinfd 6 - .[ P(COSH)SlnﬁdQ}
/2

Change the variable x =cosf = dx =-sinfd @, we have:
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B/:2£+1
‘ 2

0 -1
R™V, —J'Pf(x)dx + J.P((x)dx
1 0

| S —
X ==X

In the second term, change the variable y =—x = dy = —dx, then change back y =x. Then,
we can have:

1

2041 (
B, = RV, [P (x)dx —[ P(-x) dx
/ > J £ O /
P (=x)=(-1) P, (x)
and is reduced to:
0 / is even
_ 1
] )R, Py ¢ is odd
0

Vo, 0)=V, Y (2f+1)(5]+ fPAx)dx]Pf(m

(=135, r
RY( RY|
=V, 3[-) UPl(x)dx Pl(cos9)+7(—J _[P3(x)dx P,(cos 0)+---
r 0 7 0

E(SX 3—3)()

= O{E(ij Pl(cosﬁ)—z(ij P3(c0s¢9)+~}
2\ r 8\ 7

For a point on z-axisr =z ,60 =0, we have

V(z.0)=V, {3[5] R(l)—z(ﬁ) P3<1>+--}, P()=1
2\ r 8\ r

H.W. Check the above results with the exact one:

r*—R?
V(z,0)=V, {1——}, P (1)=1
rr’+R? /
H.W. Find the potential inside the sphere, and check the result:

V[n (7",9) :Vo {%(%)P](COSG)—%(%) P3(C059)+%[%] PS(C050)+"'}

R 41 ’ 14
It is simply changing (—j by (Ej
r
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Associated Legendre Polynomials

When Helmholtz’s equation is separated in spherical polar coordinates, one of the separated ODE’s
is the associated Legendre equation
Differential equation

d? m?
1—x? M Upr(x)=0
(I1-x { (1—x2)H ) ()
Definition
Pn’”(x):(l—xz)’"”%l’n(x); n=0,1,273,---
dx ™
m=0,1,2,---.n
P’(x)=P, (x)
P (x)=(- py L=t )P " (x)
(n+m)!
P"(=x)=(=D""P"(x)
P"(x)=0 if m>n
Generating function
(1_x2)m/2hm 0 R
g(x,h)=2m -1 —==>.h"P"(x), | <1, |x[<+1
(1—2xh +h2) "m0

Recurrence relations
2n+DxP" (x)=(n+m)P", (x)+(n m +1)Pn’il(x );
Qn+V1=x>P" (x)=P" " (x)-P" " (x)(x);
Orthogonality relation
2 T'(n+m+1)
2n+1T(m-m+1) "

[P" ()" (x )dx =

H.W. Check the following table

an ('x)
VI—x? =siné
3xvV1-x?% =3cosfsiné

3(1—x2)=3sin2¢9

é(sx 2 _1)«/1—x : :%(SCOSZ H—I)Sinﬁ

2

[ Y Y (RS N
w| N N e S
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Spherical Harmonic FunctionY, (6,¢)

Definition
imp

Y, (6,0)=0(0) jg

=" {(M—H) (f—m)!} P" (cos@e™?;  m=0
47 (L+m)!

Yé,—m 0,9)= (_l)mYZm 0,9);

1/2
20+41) (£ —m)!
)(g m)! P/" (cos @) is the
2 (L+m)!

normalized angular function. An asterisk * indicates complex conjugation.
Differential equation

1o oY, 1 @
sinfd— |+ —+l({+D) Y, (O 0
[sin@@@( aej 70007 )} n(0-9)=

Orthogonality relation

where (=0,1,2,---; m=—(,—(+1,---,+(. @(0)2{(

(tm|0'm) = J.dgy.[smed@Y/m 0,0)Y,,.(0,p)=

C( mm

The statement of completeness is that any function f* (8, ) can be represented as a sum over
spherical harmonics:

oo £

f([? "3:' = Z fm} fm“{"} r'?:l (2"}8]

for some coefficients fy,,,. By virtue of Eq. (2.5.7), these can in fact be calculated
as

Fom = / £(8, $)Yion (8, ) d2. (2.5.)

Equation (2.5.8) means that the spherical harmonics form a complete set of basis
functions on the sphere.

It is interesting to see what happens when Eq. (2.5.9) is substituted into Eq. (2.5.8).
To avoid confusion we change the variables of integration to 8’ and ¢:

fl6.0) = Z Yo 8, @ ff LY (0, ¢") dSY
= ff v{ Zlfm L VYo (0, 0) | dSY.

m

10
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The quantity within the large square brackets is such that when it is multiplied
by f(#',¢") and integrated over the primed angles. it returns f(#,¢). This must
therefore be a product of two d-functions, one for ¢ and the other for ¢. More

precisely stated,

fa's] £ . )
e e o B0 —=0)5(6 — &) )
SN V(0. Wem(8,¢) = — , (2.5.10)

=0 m=—F¢

where the factor of 1/sinf was inserted to compensate for the factor of sin#’ in
d) (the d-function is enforcing the condition #" = §). Equation (2.5.10) is known
as the completeness relation for the spherical harmonics. This iz analogous to a

well-known identity,

f( 1_61-]”")* ( 1_9“”) dk = é(z — 2'),
A 27T A 2T

in which the integral over dk replaces the discrete summation over £ and m; the
basis functions (2m)~1/2e** are then analogous to the spherical harmonics.

! m Y, (0,9)
0 0 1
\Nar
1 0
3 cosd
4r
1 1 3 .
F.|—sinf e*'?
87
Recurrence relations 2 0 5
— (3 cos’ 9—1)
167
2 +1 _
¥ /1—5 cos@sinfe*’?
87
2 +2
15 sin® @ e™'?
32r

(C+1+m)(l+1-m)
(20+1)(20+3)

1/2
COSQYLm (09 ¢) = |: } Y€+l,m (9’ q))

20+1)(20-1)

11

9-Sep-13
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1/2
sindY,, (0,p)= (Erlm)t+2-m) Y na(60,9)
’ (20+1)(20+3) ’
1/2
pr| CEEERZD |y L O e
(20+1)(20-1) -
20 +1
Example: Y, = “an P, (cos0)
Example:
Yi0=4| ! —P;(cosO) = ll(Scosz9—3C059)=l\/zcose(5c056?—3)
: 4r Ar 4\
7z z? 7T z 2 2
= 52 _3)= 5z° -3
“a\x ( r )= 4\/; r3( } ' )
Example:
w=x +iy =rsiné (cosp+i sing0)=rsin9e”p
87
:_\/?FYI,I
Example:

1 87 1 8z 1 |87 1 (87
sin @(sin @ + cos & cos :——‘/—Y ——,/—Y ——‘/—Y +—‘/—Y
( 4 ¢7) ; Ry L TR ST
Example: sin@(1-cosf)e ,f Y, ,/ Y,

Example: Jr =Br cos? 6’——7z\/7

Example: sinfcos g = ,/ Y, w/ Y,

12



