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Laplace’s Equation  
in  

Spherical Coordinates 
 
When one is dealing with a problem having axial symmetry, it is generally convenient to use 

spherical polar coordinates ( ), ,r θ φ  and my chose the axis of symmetry as the polar axis 0θ = . 
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2 Solid angle,  sind r dr d d d dτ θ θ ϕ= Ω Ω ≡ = ,  

H.W. for yourself:  Prove the following:  
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H.W. Prove that the Laplace's equation, 2 0V∇ = , in spherical coordinates is given by: 
2

2
2 2 2 2 2

1 1 1( ) sin 0
sin sin

r
r r r r r

V V Vθ
θ θ θ θ φ

∂ ∂ ∂ ∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
                                 (1) 

H.W. Prove that: 
2

2
2 2

1 1( ) ( )Vr
r r r r r

rV∂ ∂ ∂
=

∂ ∂ ∂
 

 

Separation of Variables 
 

Use  ( , , ) ( ) ( , )V r R rθ φ θ φ= Ψ , then equation (1) becomes: 
2

2
2 2 2 2 2( ) sin 0

sin sin
R Rr

r r r r r
R θ

θ θ θ θ φ
Ψ ∂ ∂ ∂ ∂ Ψ ∂ Ψ⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

                        (2) 

Divided Eq. (2) by 2/R rΨ , one obtains 
2

2
2 2

1 1 1( ) sin 0
sin sin

r
R r r

R θ
θ θ θ θ φ

∂ ∂ ∂ ∂ Ψ ∂ Ψ⎛ ⎞+ + =⎜ ⎟∂ ∂ Ψ ∂ ∂ Ψ ∂⎝ ⎠
                        (3) 

One can see that the first term is a function of r  only while the remaining two terms are 
independent of r . The above equation is satisfied if we take: 

21 ( )r m
R r r

R∂ ∂
=

∂ ∂
                          (4) 

and 
2

2 2

1 1sin
sin sin

mθ
θ θ θ θ φ

∂ ∂ Ψ ∂ Ψ⎛ ⎞ + = −⎜ ⎟Ψ ∂ ∂ Ψ ∂⎝ ⎠
                        (5) 

where m  is a constant. The solutions of eqs. (4) and (5) take simpler forms, if one takes the 
constant m  as ( 1)l l + where the constant l  is still arbitrary. We get 
 

21 ( ) ( 1)r l l
R r r

R∂ ∂
= +

∂ ∂
                            (4a) 

And 
2

2 2

1 1sin ( 1)
sin sin

l lθ
θ θ θ θ φ

∂ ∂ Ψ ∂ Ψ⎛ ⎞ + = − + Ψ⎜ ⎟∂ ∂ ∂⎝ ⎠
                        (5a) 

First we may find the solution of radial equation (4a). This may be expressed as 
2( ) ( 1) 0r l l R

r r
R∂ ∂

− + =
∂ ∂

                                      (4b) 

Let us substitute ( ) ( ) /R r U r r= , Then eq. (4b) becomes 
2

2 2

( ) ( 1) ( ) 0U r l l U r
r r

∂ +
− =

∂
                                      (4c) 

From the form of (4c) it is apparent that a single power of r  (rather than of power series) will 
satisfy it. One finds the solution to be 

1
1( ) ( )l l

l l

B BU r Ar R r Ar
r r

+
+= + ⇒ = +  

where l  is yet undetermined and A and B are arbitrary constants. 
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H.W. Prove the above solution. 
Answer: Substituting this expression in the differential equation for ( )R r  we obtain 

( )21 ( 1) ( 1)k
k r Ar k k

Ar r r
∂ ∂⎛ ⎞ = + = +⎜ ⎟∂ ∂⎝ ⎠

 

Therefore, the constant k must satisfy the following relation: 
2 ( 1)k k+ = +  

This equation gives us the following expression for k 

( )1 2 11 1 4 ( 1)
or

2 2
( 1)

k k
⎧

− ± +− ± + + ⎪= = ⇒ = ⎨
⎪− +⎩

 

The general solution for ( )R r is thus given by 

1( ) BR r Ar
r += +  

where A and B are arbitrary constants. 
 
 Now, we may try for the solution of (5a). Any solution of (5a) Ψ  is a function of θ  and φ  
and is called a surface harmonic of degree ‘ l ’. Adopting the same technique let the solution of (5a) 
be ( ) ( )θ φΨ = Θ Φ ≡ ΘΦ , then (5a) will be: 

2

2 2sin ( 1) 0
sin sin

l lθ
θ θ θ θ φ

Φ ∂ ∂Θ Θ ∂ Φ⎛ ⎞ + + + ΘΦ =⎜ ⎟∂ ∂ ∂⎝ ⎠
                         (5b) 

Dividing (5b) throughout by 2sin θ
ΘΦ , one obtains 

2
2

2

sin 1sin ( 1)sin 0d dl l
d d

θ θ θ
θ θ φ

∂Θ Φ⎛ ⎞ + + + =⎜ ⎟Θ ∂ Φ⎝ ⎠
                       (5c) 

One finds that the variables are again separable. The first two terms in (5c) are functions of θ  only 
and the last term is a function of φ  only. Let us take 

2
2

2

1 m
φ

∂ Φ
= − Φ

Φ ∂
                      (Azimuthal)                   (6) 

Where m  is constant. The solution of (6) is 
( ) im

m C e φφ ±Φ =                                                           (7) 
where C  is a constant. In order that potential V be single valued, it is essential that 

( 2 )im ime eφ φ π± ± +=                                                    (8) 
This is possible only if m is an integer. One can normalize the function mΦ by choosing the constant 

in such way that
2

*

0

1m md
π

φΦ Φ =∫ . For this to be satisfied, constant C  must be equal to 1
2π

. We 

must note that the functions mΦ  are also orthogonal, i.e. 
2

*

0
m n mnd

π

φ δΦ Φ =∫  
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Note: Φ  must be a periodic function whose period evenly divides 2π, i.e. ( ) ( )2φ φ πΦ = Φ + , m is 

necessarily an integer and Φ is a linear combination of the complex exponentials ime φ±  
 
Legendre’s equation 
 

Equation (5c) could be simplified using Equ. (6), with Azimuthal symmetry m = 0, and 
using the definition cosµ θ= , to prove that: 

2sin (1 )d d d
d d d

θ µ
θ µ µ

= − = − − , 

2
2 2

2

1 sin (1 ) 2 (1 )
sin

d d d d d d
d d d d d d

θ µ µ µ
θ θ θ µ µ µ µ

⎛ ⎞⎛ ⎞ = − − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

This implies that the function P satisfies the equation 

                                      2 ( )(1 ) ( 1) ( )d dP P
d d

µµ µ
µ µ

⎛ ⎞
− = − +⎜ ⎟

⎝ ⎠
 

(We now have P  since for every  we will have a different function.). The last equation is the 
Legendre equation, and its solutions are the Legendre polynomials ( cos )mP µ θ≡ .  

Combining the solutions for ( )R r and ( )P µ  we obtain the most general solution of Laplace's 
equation in a spherical symmetric system with azimuthal symmetry: 

1
0

( , ) ( )BV r Ar P
r

µθ
∞

+
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑  

Applications 
1-  r- dependent of  V   
Example:  Find the general solution to Laplace's equation in spherical coordinates, for the case 
where ( )V r  depends only on r. 
Answer: Start with the Laplace's equation in spherical coordinates and use the condition  
               V is only a function of r then: 

0V V
θ φ

∂ ∂
= =

∂ ∂
 

Therefore, Laplace's equation can be rewritten as 

2
2

1 ( ) 0Vr
r r r

∂ ∂
=

∂ ∂
 

The solution V of this second-order differential equation must satisfy the following first-order 
differential equation: 

2 constantVr a
r

∂
= =

∂
 

This differential equation can be rewritten as 

2

V a aV b
r r r

∂
= ⇒ = − +

∂
 

where b is a constant. If V = 0 at infinity, such as Columbic potential, then b must be equal to zero, 
and consequently 
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aV
r

= −  

2-  r andθ   dependent of  V  (Similar to Polar coordinates) 
Consider a spherical symmetric system. Assuming that the system has azimuthal symmetry 

( 0V
ϕ

∂
⇒ =

∂
), then Laplace's equation reduces to: 

21 ( )( ) ( 1)  constant
( )

R rr
R r r r

∂ ∂
= + =

∂ ∂
                               (Radial equation) 

and 
1 1 ( )sin ( 1)
( ) sin

θθ
θ θ θ θ

∂ ∂Θ⎛ ⎞ = − +⎜ ⎟Θ ∂ ∂⎝ ⎠
                              (Angular equation) 

 
Example 1: The potential 0 ( )V θ   is specified on the surface of a hollow 
sphere, of radius R. Find the electrostatic potential inside the sphere. 
Answer: The system has spherical symmetry and we can therefore use the 
most general solution of Laplace's equation in spherical coordinates: 

1
0

( , ) (cos )BV r A r P
r

θ θ
∞

+
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑  

Consider the region inside the sphere ( r R< ). In this region 0B = , 
otherwise ( , )V r θ  would blow up at r = 0. Thus: 

0
( , ) (cos )V r A r Pθ θ

∞

=

= ∑  

The potential at r R= is therefore equal to 

0
0

( , ) (cos ) ( )V R A R P Vθ θ θ
∞

=

= =∑  

To calculate the constant A  we are going to use the Fourier’s trick, with the orthogonality relation 
of the Legendre polynomials, i.e.  

'

' ' 0
0 0 0

2
2 1

(cos ) (cos )sin (cos ) ( )sinA R P P d P V d
π π

δ

θ θ θ θ θ θ θ θ
∞

=

+

=∑ ∫ ∫  

This implies: 

0
0

2 1 ( ) (cos )sin
2

A V P d
R

π

θ θ θ θ+
= ∫  

Then  

0
0 0 0

0
0 0

cos

cos

2 1( , ) (cos ) ( ) (cos )sin ( )
2

2 1 ( ) (cos )sin ( )
2

V r A r P V P d r P
R

rV P d P
R

π

π

θ

θ

θ θ θ θ θ θ

θ θ θ θ

∞ ∞

= =

∞

=

⎡ ⎤+
= = ⎢ ⎥

⎣ ⎦
⎡ ⎤+ ⎛ ⎞= ⎢ ⎥ ⎜ ⎟

⎝ ⎠⎣ ⎦

∑ ∑ ∫

∑ ∫
 

0 ( )V θ  
 

R
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H.W. Find the electrostatic potential outside the sphere. Here you will find 0A =  and 

                                  1
0

0

2 1 ( ) (cos )sin
2

B R V P d
π

θ θ θ θ++
= ∫  

Example: The potential at the surface of a sphere, of radius R, is given by: 
( ) cos(3 )oV Kθ θ=  

where K  is a constant. Find the potential inside and outside the sphere. (Assume that there is no 
charge inside or outside the sphere.)  
 
Answer:  The most general solution of Laplace's equation in spherical coordinates is: 

1
0

( , ) ( )BV r A r P
r

µθ
∞

+
=

⎡ ⎤= +⎢ ⎥⎣ ⎦
∑  

Part A: Consider the region inside the sphere ( r R< ). In this region 0B = , otherwise ( , )V r θ  
would blow up at r = 0. Thus: 

ins
0

( , ) ( )V r A r P µθ
∞

=

= ∑  

The potential at r R= is therefore equal to 

0
( , ) ( ) cos(3 )V R A R P Kµθ θ

∞

=

= =∑  

Using trigonometric relations we can rewrite cos(3 )θ as: 

( ) ( ){ } [ ] ( ) ( )3
3 1 1 3 1

1
5

8 3cos(3 ) 4 3 4 2 3 3
5 5

P P P P Pµ µ µ µ µ µθ ⎡ ⎤= − = + − = −⎣ ⎦  

Substituting this expression in the equation for ( , )V R θ we obtain 

( ) ( )3 1
0

8 3( , ) ( )
5 5

V R A R P K P Pµ µ µθ
∞

=

⎡ ⎤= = −⎢ ⎥⎣ ⎦
∑  

This equation immediately shows that 0A = unless 1= or 3= . If 1= or 3= then 

1 3 3

3 8,
5 5

K KA A
R R

= − =  

The electrostatic potential inside the sphere is therefore equal to 

( ) ( )3
ins 1 33

3 8( , )
5 5

K KV r r P r P
R R

µ µθ = − +  

Part B: Now consider the region outsider the sphere (r > R). In this region 0A = , otherwise 
( , )V r θ   would blow up at infinity. The solution of Laplace's equation in this region is therefore 

equal to: 

out 1
0

( , ) ( )BV r P
r

µθ
∞

+
=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑  

The potential at r R= is therefore equal to (from part A) 
 

( ) ( )3 11
0

8 3( , ) ( )
5 5

BV R P K P P
R

µ µ µθ
∞

+
=

⎡ ⎤ ⎡ ⎤= = −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∑  
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The equation immediately shows that 0B =  except when 1= or 3= . If 1= or 3= then: 
2 4

1 3
3 8,
5 5

B KR B KR= − =  

The electrostatic potential outside the sphere is thus equal to 

( ) ( )
2 4

out 1 32 4

3 8( , )
5 5
K R K RV r P P

r r
µ µθ = − +  

 
H.W. Check if the out in( , ) ( , )V r V rθ θ=  at r R= . 
 
Example: Find the potential outside two insulated conducting 
spheres, each of radius R, with the given boundary condition: 

            0
2( , )

            
2

o

o

V
V R

V

πθ
θ

π θ π

⎧ + ≤ ≤⎪⎪= ⎨
⎪− ≤ ≤
⎪⎩

 

where  oV is a constant. Assume that there is no charge inside or 
outside the spheres.  
 
Answer:  The most general solution of Laplace's equation in 
spherical coordinates is: 

1
0

( , ) ( )BV r A r P
r

µθ
∞

+
=

⎡ ⎤= +⎢ ⎥⎣ ⎦
∑  

Consider the region outside the sphere (r > R). In this region 0A = , otherwise ( , )V r θ   would 
blow up at infinity. The solution of Laplace's equation in this region is: 

1
0

( , ) ( )out
BV r P
r

µθ
∞

+
=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑  

The potential at r R= is therefore equal to 
 

1
0

( , ) ( )out
BV r R P

R
µθ

∞

+
=

⎡ ⎤= = ⎢ ⎥⎣ ⎦
∑  

Where  

1

0

/ 2
1

0 / 2

2 1 ( , ) (cos )sin
2

2 1 (cos )sin (cos )sin
2 o

B R V R P d

R V P d P d

π

π π

π

θ θ θ θ

θ θ θ θ θ θ

+

+

+
=

⎧ ⎫+
= −⎨ ⎬

⎩ ⎭

∫

∫ ∫
 

Change the variable cos sinx dx dθ θ θ= ⇒ = − , we have: 
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0 1
1

1 0

2 1 ( ) ( )
2 o

x x

B R V P x dx P x dx
−

+

→−

⎧ ⎫
⎪ ⎪+ ⎪ ⎪= − +⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∫ ∫  

In the second term, change the variable ,y x dy dx= − ⇒ = −  then change back .y x=  Then, 
we can have: 

1 1
1

0 0 ( ) ( 1) ( )

2 1 ( ) ( )
2 o

P x P x

B R V P x dx P x dx+

− = −

⎧ ⎫
+ ⎪ ⎪= − −⎨ ⎬

⎪ ⎪⎩ ⎭
∫ ∫  

and is reduced to: 

( )
1

1

0

           0                                        is even

2 1 ( )              is oddo

B
R V P x dx+

⎧
⎪= ⎨ +⎪
⎩

∫
 

 

( )

( )3

1 1

1,3,5, 0

2 41 1

1 1 3 3
0 0 1 5 3

2

2 4

1 3

( , ) 2 1 ( ) ( )

3 ( ) (cos ) 7 ( ) (cos )

3 7(cos ) (c
2 8

out o

o
x x x

o

RV r V P x dx P
r

R RV P x dx P P x dx P
r r

R RV P P
r r

θ µ

θ θ

θ

+∞

=

−

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪⎜ ⎟⎝ ⎠

⎪ ⎪⎝ ⎠⎩ ⎭

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∫

∫ ∫

os )θ
⎧ ⎫⎪ ⎪+⎨ ⎬
⎪ ⎪⎩ ⎭

 

 
For a point on z-axis , 0r z θ= = , we have 

2 4

1 3
3 7( ,0) (1) (1) ,                (1) 1
2 8o

R RV z V P P P
r r

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= − + =⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

H.W. Check the above results with the exact one: 
 

2 2

2 2
( ,0) 1 ,                (1) 1o

r RV z V P
r r R

⎧ ⎫−
= − =⎨ ⎬

+⎩ ⎭
 

 
H.W. Find the potential inside the sphere, and check the result: 

3 5

1 3 5
3 7 11( , ) (cos ) (cos ) (cos )
2 8 16in o

r r rV r V P P P
R R R

θ θ θ θ
⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
 

It is simply changing 
1

by  R r
r R

+
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Associated Legendre Polynom ials  
When Helmholtz’s equation is separated in spherical polar coordinates, one of the separated ODE’s 
is the associated Legendre equation 
Differential equation 

2 2
2

2 2(1 ) 2 ( 1) ( ) 0
(1 )

m
n

d d mx x n n P x
dx dx x

⎡ ⎤⎧ ⎫
− − + + − =⎨ ⎬⎢ ⎥−⎩ ⎭⎣ ⎦

 

Definition  
2 / 2( ) (1 ) ( );                             0,1, 2,3,

                                                                                0,1, 2, ,

m
m m

n nm

dP x x P x n
dx

m n

= − =

=
  

( )
( )

0

!
!

( ) 0              if  

( ) ( )

( ) ( 1) ( )

( ) ( 1) ( )

n n

m m m
n n

m n m m
n n
m

n

x x
n m

x x
n m

x x

P x m n

P P

P P

P P

−

+

−
+

= >

=

= −

− = −

 

Generating function 

( )
2 / 2

1/ 22 01

(1 )( , ) (2 1)!! ( ),             1, 1
2

m m
n m

nm
n

x hg x h m h P x h x
xh h

∞

+
=

−
= − = < ≤ +

− +
∑  

Recurrence relations 
( )1 1

2 1 1
1 1

(2 1) ( ) ( ) ( ) 1 ( );

(2 1) 1 ( ) ( ) ( )( );

m m m
n n n

m m m
n n n

n xP x n m P x n m P x

n x P x P x P x x

− +

+ +
− −

+ = + + − +

+ − = −
  

Orthogonality relation  
1

1

2 ( 1)( ) ( )
2 1 ( 1)

m m
n n

n mP x P x dx
n n m

δ
−

Γ + +
=

+ Γ − +∫ 

H.W. Check the following table 
  

( )m
nP x  n m 

21 sinx θ− =  1  1  
23 1 3cos sinx x θ θ− =  2  1  

( )2 23 1 3sinx θ− =  2  2  

( ) ( )2 2 23 35 1 1 5cos 1 sin
2 2

x x θ θ− − = −
3  1 

 



Prof. Dr. I. Nasser                                           Phys 571   T_131                                                       9-Sep-13 
spherical_coordi_Phys571_T131 

 10

,Spherical Harmonic Function ( , )mY θ ϕ  
Definition 

( )

,

1/ 2

*
, ,

( , ) ( )
2

2 1 ( )!( 1) (cos ) ;        0
4 ( )!

( , ) ( 1) ( , );

im

m

m m im

m
m m

eY

m P e m
m

Y Y

ϕ

ϕ

θ ϕ θ
π

θ
π

θ ϕ θ ϕ−

= Θ

+⎡ ⎤−
= − ≥⎢ ⎥+⎣ ⎦
= −

  

where 0,1, 2, ; , 1, ,m= = − − + + . ( ) 1/ 2
2 1 ( )!( ) (cos )

2 ( )!
mm P

m
θ θ

+⎡ ⎤−
Θ = ⎢ ⎥+⎣ ⎦

 is the 

normalized angular function. An asterisk * indicates complex conjugation. 
D ifferential equation  

2

,2 2

1 1sin ( 1) ( , ) 0
sin sin mYθ θ ϕ

θ θ θ θ ϕ
⎡ ⎤∂ ∂ ∂⎛ ⎞ + + + =⎢ ⎜ ⎟ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

 

Orthogonality relation  
2

*
, ', ' ' '

0 0

' sin ( , ) ( , )m m mmm m d d Y Y
π π

ϕ θ θ θ ϕ θ ϕ δ δ= =∫ ∫ 

The statement of completeness is that any function ( , )f θ ϕ can be represented as a sum over 
spherical harmonics: 
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Recurrence relations 

       

1/ 2

, 1,

1/ 2

1,

( 1 )( 1 )cos ( , ) ( , )
(2 1)(2 3)

( )( ) ( , );
(2 1)(2 1)

m m

m

m mY Y

m m Y

θ θ ϕ θ ϕ

θ ϕ

+

−

⎡ ⎤+ + + −
= ⎢ ⎥+ +⎣ ⎦

⎡ ⎤+ −
+ ⎢ ⎥+ −⎣ ⎦

      

l m ( , )lmY θ ϕ  
0 0 

  1
4π

 

1 0 
  3 cos

4
θ

π
 

1 1±  3 sin
8

ie ϕθ
π

±∓  

2 0 
  ( )25 3cos 1

16
θ

π
−  

2 1±  15 cos sin
8

ie ϕθ θ
π

±∓  

2 2±  
  2 215 sin

32
ie ϕθ

π
±  
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1/ 2

, 1, 1

1/ 2

1, 1

( 1 )( 2 )sin ( , ) ( , )
(2 1)(2 3)

( )( 1) ( , )
(2 1)(2 1)

m m

i
m

m mY Y

m m Y e ϕ

θ θ ϕ θ ϕ

θ ϕ

+ −

− −

⎡ ⎤+ − + −
= ⎢ ⎥+ +⎣ ⎦

⎧ ⎫⎡ ⎤+ + −⎪ ⎪+ ⎨ ⎬⎢ ⎥+ −⎣ ⎦⎪ ⎪⎩ ⎭

        

 

Example:                         ,0
2 1 (cos )

4l l
l PY θ
π
+=  

 
Example:  

( )

3

2
2 2

3

2
3,0

1 1 7( cos (5cos 3)
2 4

1 7 1 7(5 3) 5 3
4 4

7 7cos ) (5cos 3cos )
4 4

z z z z r
r r r

Y P θ θ θ
π

π π

θ θ
π π

−

= − = −

= = − =
 

Example:  

1,1

sin (cos sin ) sin

8
3

ix iy r i r e

r Y

ϕψ θ ϕ ϕ θ

π

= + = + =

= −
  

Example:  

                   ( ) 1,1 1, 1 2,1 2, 1
1 8 1 8 1 8 1 8sin sin cos cos
2 3 2 3 2 15 2 15

Y Y Y Y
i i

π π π πθ ϕ θ ϕ − −+ = − − − +  

   ( ) 1,1 2,1
8 8sin 1 cos
3 15

ie Y Yϕ π πθ θ− = − − Example:              

          2
2,0

163 cos
5

Yπ π θ π− = − Example:                  

Example:                            1,1 1, 1
2 2sin cos
3 3

Y Yπ πθ ϕ −= − +   

 


