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SpinYz (Pages 1-12 are needed)

Recall that in the H-atom solution, we showed that the fact that the wavefunction y(r) is single-

valued requires that the angular momentum quantum number be integer: £ =0, 1, 2.. However, operator
algebra allowed solutions £ =0, 1/2, 1, 3/2, 2...

Experiment shows that the electron possesses an intrinsic angular momentum called spin with € = Y.
By convention, we use the letter s instead of € for the spin angular momentum quantum number : s = %2. The
existence of spin is not derivable from non-relativistic QM. It is not a form of orbital angular momentum; it
cannot be derived from L= T x p. (The electron is a point particle with radius r = 0.)

Electrons, protons, neutrons, and quarks all possess spin s = 2. Electrons and quarks are elementary
point particles (as far as we can tell) and have no internal structure. However, protons and neutrons are made
of 3 quarks each. The 3 half-spins of the quarks add to produce a total spin of % for the composite particle
(in a sense, TTV makes a single T). Photons have spin 1, mesons have spin 0, the delta-particle has spin 3/2.
The graviton has spin 2. (Gravitons have not been detected experimentally, so this last statement is a
theoretical prediction.)

Spin and Magnetic Moment

We can detect and measure spin experimentally because the spin of a charged
particle is always associated with a magnetic moment. Classically, a magnetic moment is
defined as a vector [ associated with a loop of current. The direction of L is 1}

perpendicular to the plane of the current loop (right-hand-rule), and the magnitude is
p=1A = inr’. The connection between orbital angular momentum (not spin) and

[

magnetic moment can be seen in the following classical model: Consider a particle with
mass m, charge q in circular orbit of radius r, speed v, period T.

i
i_a4 o, 2m L av M:iA:(q_VJ(mz):m
T T 27r 2RY 2 m, q
L.

| angular momentum |=L=pr = mvr , so vr=L/m, and p = avr _ 9
2 2m
So for a classical system, the magnetic moment is proportional to the orbital angular momentum:
i=-310 (orbital).
2m

The same relation holds in a quantum system.
In a magnetic field B, the energy of a magnetic moment is given by E = —HB = —u, B (assuming
B=Bz2 ). InQM, L, = im. Writing electron mass as m, (to avoid confusion with the magnetic quantum

e
number m) and q = —e we have || = _im, where m = — € .. + {. The quantity p, =

Zme me

is called

the Bohr magneton. The possible energies of the magnetic moment in B=BzZ is given by

E,=-n,B=-u,Bm.

orb

For spin angular momentum, it is found experimentally that the associated magnetic moment is twice

as big as for the orbital case: i = 43 (spin) (We use S instead of L when referring to spin angular
m

momentum.) This can be written =—im =—2p,m. The energy of a spin in a field is

€
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E. ., =—2u; Bm (m=+1/2) a fact which has been verified experimentally. The existence of spin (s = %)

spin
and the strange factor of 2 in the gyromagnetic ratio (ratio of [ to §) was first deduced from
spectrographic evidence by Goudsmit and Uhlenbeck in 1925.

Another, even more direct way to experimentally

determine spin is with a Stern-Gerlach device, (This

page from QM notes of Prof. Roger Tobin, Physics
Dept, Tufts U.) A
Stern-Gerlach Experiment (W. Gerlach & O. Stern, ___—»--

Z. Physik 9, 349-252 (1922). a

F=-V({i-B)=—fi-VB :
( aBZJ ](”
Z ILIZ

E
oz
Deflection of atoms in z-direction is proportional to z-component of magnetic moment L,, which in

turn is proportional to L,. The fact that there are two beams is proof that £ = s = .. The two beams
correspond to m = +1/2 and m = —1/2. If £ = 1, then there would be three beams, corresponding to m =—1, 0,
1. The separation of the beams is a direct measure of W, which provides proof that p, = —2p, m

The extra factor of 2 in the expression for the magnetic moment of the electron is often called the "g-
factor" and the magnetic moment is often written as 1, = —gu, m. As mentioned before, this cannot be
deduced from non-relativistic QM; it is known from experiment and is inserted "by hand" into the theory.
However, a relativistic version of QM due to Dirac (1928, the "Dirac Equation") predicts the existence of
spin (s = %) and furthermore the theory predicts the value g = 2. A later, better version of relativistic QM,
called Quantum Electrodynamics (QED) predicts that g is a little larger than 2. The g-factor has been
carefully measured with fantastic precision and the latest experiments give g = 2.0023193043718(%76 in the
last two places). Computing g in QED requires computation of a infinite series of terms that involve
progressively more messy integrals, that can only be solved with approximate numerical methods. The
computed value of g is not known quite as precisely as experiment, nevertheless the agreement is good to
about 12 places. QED is one of our most well-verified theories.

Spin Math

Recall that the angular momentum commutation relations
[C,L,1=0, [L,L]=isl, (,j, andk cyclic)
were derived from the definition of the orbital angular momentum operator: L=r7x p.

The spin operator S does not exist in Euclidean space (it doesn't have a position or momentum vector
associated with it), so we cannot derive its commutation relations in a similar way. Instead we boldly
postulate that the same commutation relations hold for spin angular momentum:

[$°,8,1=0, [S;,8,]1=1iAS,.
From these, we derive, just a before, that

hzs(s+l)|sms> = %h2|sms> (sinces=")

éZ

sm,)

A

S sms>

hm

z

sm,) = i%h|sms> (since my=—s +s =-1/2,+1/2)
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Notation: since s =}, always, we can drop this quantum number, and specify the eigenstates of S?, and §Z
by giving only the m; quantum number. There are various ways to write this:

1
spin up (T)E;{+E|a>s|%> E|+>E( ]

X.=|s,m;>=|m, >=
) : 1 0
splndown(i«)E;{_E|ﬁ>z|—5>z|—> 5(1]

These states exist in a 2D subset of the full Hilbert Space called spin space. Since these two states are
eigenstates of a Hermitian operator, they form a complete orthonormal set (within their part of Hilbert space)

and any, arbitrary state in spin space can always be written as |X> = a‘T> + b‘¢> = (Zj and the
normalization gives:
() =1 = o[ + o] =

Note that:

(tM=( 0)@}:1,
() = 1. (T =4 1)=

If we were working in the full Hilbert Space of, say, the H-atom problem, then our basis states would
be |£ m,s ms> . N is another degree of freedom, so that the full specification of a basis state requires 4

similarly:

quantum numbers without n. (More on the connection between spin and space parts of the state later.)
[Note on language: throughout this section I will use the symbol SZ (and éx , etc) to refer to both the

observable ("the measured value of éz is +h/2") and its associated operator ("the eigenvalue of éz is
+h/2").

The matrix form of S* and S, in the ‘m(z)> basis can be worked out element by element. (Recall

that for any operator A A = <m|A|n>
(1§ 1) =+= h28 3 (V) =+ h28 3 (T$*|¥) =

ss'mgmg "2 ss'mgmg "2

Then in the matrix notation one finds:

M) =+= hSSSSmm., (V]8, S

¢>= —nd.8 (1

ss'mgmg "2

J«> =0, etc.

z

h h . "

)= [ebiel Lo 2 ] [0 Lo
LB BB ey ho 1
) 5<:3|6¥> _5<ﬁ|’8> 20 21

and
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N 1 0
()= 20
4 01

Operator equations can be written in matrix form, for instance,

1) = %\T) = %[(1, _OJ((IJ N %[éj

We are going ask; what happens when we make measurements of S,, as wellas S, and S ?, (using a Stern-

S

z

Gerlach apparatus). Will need to know: What are the matrices for the operators S_ and Sy ? These are
derived from the raising and lowering operators:

& a A g _ 1

R SO b
To get the matrix forms of S . and S, we need a result:

S, s,ms> = h\/s(s+1)—ms(mS 1) |s, m, i1>

For the case s = }4, the square root factors are always 1 or 0. For instance, s =Y, m=-1/2 gives
s(s+l)-m(m+1) = %(%)— (—%)(%) = 1. Consequently,

SN = a[M), 8|1 = 0and $|1) = a[d), S|) = o0,
e <T S, T) = 0, <T S, i) = 1, etc.
Then:
(5 )={<+|é+|+> <+|é+|>]_[o h<+'+>]=h(° 1]
' (8++) (=I8+=)) Lo n{-|+) 00
and

. 0 0
(5.)=n
1 0
Notice that S, , S_ are not Hermitian.
Using S, = %(&r + é_) and §y = %(& —é_) yields

. 0 1 N 0 —i
(Sx) = E (S ) = E . ! These are Hermitian, of course.
21 0 Y 201 0

H.W. Check the following table:

| ) |5) | ) |5)
¥ ) 318) S, 518) ~3le)
S, 5la) ~518) S, 0 |
S 518) 5la) S- 1) 0
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Example: Find the expectation value for the Hamiltonian H = a(§ St S yz -2§ N+ bSAZ , Where a and
b are constants.

Answer: Use the expression; S* =S; +S’ +S;

We can find:

H =a(S; +8]+8;-35])+bS,

=aS?—3aS’ +bS,
And
H s,ms>={a§2—3a§f+b§z} s,m,)

:{aS(S +1)_3arn52+bms} 5>

:{ia—3ia+bms} s,m,)=bm,|s,m,)
Then

<Sams s>=bms<s’m 5>:bms

One-electron system
The Hamiltonian
2
Z
H, B
2m r

s>: (/>S

spin parts of the wave function. m, is the projection quantum number associated with ¢ and m, is

has the uncoupled wave function

ms> which identify the angular and

0995

the projection quantum number associated with S satisfies the relations:
(£.m,.s'm, )= U+1)8,8,8, .8

199

SmS

<€',m;,s 'm.

> m,d,,04.0

£>%> m,m, mgmg

099>

<£‘,m;,s‘,m; S?

)=5(+1)5,,6,8 .6

SmS

<€',m;,s m,

)=m.5,6.5 .5

£ m,m, ~mgm,

Aslo, the wave function

£,,],m i > in LS-coupling has similar relations:

§)=U0+1)5,8,.6;68,

imj

|08, §,m;

S(s +1)0,,6.9;; ,5m‘m.

i j

)=
K,S,] mj>:J(J+1)6Mé‘SS§ 6 ;m
)

M )=M;5,8,0,0,

In which J =L +S ,and
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Note that

=30 +3;+3] = *+S2+2L8 =12 +S°+2L,S, +LS_ +LS,,

/,5,j,m j >are not eigenfunctions of I:Z or S L -

representation.

L, =L, -L)/2i, L, =, +L)/2

L =|?—L”§—h|ﬁz

+1)

y 0" sind ap

~ 1 0 i 1 7
L? =—#* —(sin 6’—) +— -
sin @ A0 od) sin” 0 Jp

Il
(SN
< o X
+
[N
< v <
+
‘—l)
l_
+
(s
o
_+_
[\)
[
(f)
I_i\)
+
wn>
o
+
[\)
Jo
(f)
|_>
‘—'>l I(D)
+
|

J
3,3, ]=ind.. [jy,jz]:mjx, [jz,jx]:mjyji
J1im;>=r*j(j+ D] j,m; >

J,lim >=maljm > J’|jm >=m"]jm, >
J [ §.m;>=n/i(j+D-m;m; 1) | j,m; 1>
3.3 ]=2nd,, [3,,3 |=-nd, [3,,3.]=1],

(3,3 =[32,3.]=[34,]=[32.4,]=[3.3.]=0,

’,s,], m; >are said to be in the coupled

>

(_l)l
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Addition of Angular momentum
.1 .
1- Two spin particles

Let S, and S; denote spin operators of two different electrons {or neutrons and protons). Then,
there are 4 independent states.

Is1zos22) = | 10| TLi [ LT | L1

where | 1) = [s = 5,8 = 3, -

and | |) = |s= 5,8 = —3) = [ 1) = [s1, 52, 812, 822) = |3, 3. 3, 3)

—

y

These eigenstates are direct product of x T, M1, x1(2), xH(2) which are eigenstates of .ﬁlz, 52
glw. and Sgw.

() "(2)

Example) | 1) =
= S| 11 =21 11), Sa| 11) = & 1), S2| 11) = 3% 1), 52| 11) = 3% 11)

We can also consider the total spin S of the two electron system. |5 = 5; + Sq

Since [S1.S3] = 0 (because they act on different particles), we see that S5;, S;, and 5}, satisfy the
angnlar momentum comrmutator relation.

[gp 5'_;‘] = [5'11' + Sai, 5'1_; “+ gz_;] = [§'1a1 5'1_;] + [5'2;'1 SIZ}] = ?'T“w“ajkglk + fﬁfjjk§2k

= [f;'i. -?j] = éﬁ.fz'jikl?k

Hence it follows that [52, 5,] = 0 and we can constmet simmltaneonus eigenstates of S2 and S, (total
angnlar momentum magnitude and its z-component) |s, s-) where s; = —s,—s+1,---,s — 1, s

The problem is
(1) What are possible eigenstates of 5% and 5.7
(ii) How can we construct the eigenstate |s, s») in terms of the 4 basis states (| 113, | 11, L1).] LL)7

First, note that 4 basis states are eigenstates of .S'v = .5'13 + Szv.

§':|H.} = LSI:-I—SL”H}:E _| | 1)
: PR T
=11 = (S +82) T =35 T =511 =011])

. ’ L A R R, ’
SN = B+ Sa)l D ==z 1D+ 3111 =011
- . LA P [/ .
S = St S| L) = =21 1) = o L) = —Al L)
Possible eigenvalues of S, are 0,},0, —h. But these direct product states are not eigenstates of 52

in general.

57 = (S1+8:)2 =57 4+52 428 .8, =57+

2 e oa s oa s oa
2

+ 2(S12522 + S1952 + 512522)
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Alternative way to get eigenstates of 52 and S.

In order to obtain eigenstates of 5% and S, using {| 1), | 11}, | 11}, | [ ]} } as basis state, you can
construet and diagonalize the corresponding matrices of 5% and S..

-

52 — 5'% + 522 + (-§'1+'§'2— + 5'1—5;'2+J + 2851552

DV T A JRE g

ST = (R + WD 1D +0+0+ 222 11) = 28| 11)

« . 3 3 . . R, h . .. -

ST = (R + A1 +0+ R 1) +25(=5) 1) =F3( 11} + 1)
. 3 3 ] " CoRoR -

11 = (R + JADILD + A2 1D +0+2(=3) | 1) =R ID) +110)

S = =2 10)

Then. matrix corresponding to S2

2R 0 00
. 0 R ORT 0 -
SI'Z: D ﬁz ﬁz D = |52_AJ.|=D
0 0 0 2K

Diagonalization: eigenvalue and eigenvector

1 {0

(1) eigenvalue: 2k*, eigenvector: 0 (ii) eigenvalue: 2k=, eigenvector: 0

1] 1

11 1-=A 1 . .
N i 2 . = (] — 2 _ 1 v

Diagonalize ( 11 ) . ) -\ ‘ 0= (1-A) 1=A=20
0 0
. 1 ) 1
(iii) eigenvalue: 2k<, eigenvector: % |1 (iv) eigenvalue: 0, eigenvector: 7z | —1
0 0

Therefore, we have two basis sets and the transformation between them are given as follows.
Uncoupled representation:
|53:53: 81258220 = | TT)s | T 1 4TS | L)

Coupled representation:

triplet states singlet state
2 2 2 L1y = |17}
&, 82,87, 8y = \ 1 71 414 44 “ 1 71 414 4
P=N L0 = LD +11D) 10.0) = (11 — | 41)
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)=mals;m;)
SZ|sim;)=s,(s; +DA’|s;m;) , i=12 )
|s;m;s,m, ) =|s,m,)|s,m,) (IT)
S =5, =1
1~ 22 _E
|sms m,)=mx|sms,m,)
,)=8,(s, +DA*|s,ms,m,)
(1)
|slmls m,)=m,Als,ms,m,)
$7|sims,m,) =s,(s, +)A*|s;m;s,m,)
SAz Slm182m2>=(§12 +S 2z |51m132m2>
:(§lz m1>)|52m2>+(§22|52m2>)|slml>
(IV)
(V)

me= +%

my= —%

Sz or

SJ o S[

Mg=0 Mg =+ Ms=0 Msg= —1
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SAz \g(%ﬂz _ﬂlaZ) = \/%(SAH +$,, )(alﬂz _ﬂlaz)
= \g[ﬂz (§1z a, ) -, (§lz By ) +a (§22 B, ) - B (§22 a, )]
= h\/g(%ﬂzal +%a2ﬂ1 _%alﬁz _%ﬂla2) =0

H.W.

H.W. check the following
Sy =0y, W:\g(alﬁz_ﬂlaz)
o 3 ~ 3 IS 1
Sty =¥ Sy =3V, 281252#:2(—;);//

§+1§—z\g(a1ﬁz _:Blaz) = \/%(O_QI'BZ)
Sﬂflslz\g(alﬂz _:Blaz) = \g(ﬂlaZ _0)

SAz\g(anBz +pa, ) = 1(1+1)h2\g(0‘1ﬂ2 + ﬂlaz)a
SAz \/%(Ollﬂz+,310£2)=0h\g(a1,32+,310{2) |

10
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Q: What is the configuration for the P -orbital (£ =1) for the electron in the Hydrogen atom
in LSJ-coupling scheme?
Answer: The wave function of the Hydrogen atom can be given by:
P =Ro (FY 0 (6,0) 7, =|n,6,m,) s,ms>:|n,€,m[,s,ms>=‘n,£,s,j,mj>

1 . 1 .o .
Where ZZI,S:E’J zli?mj ZJ,J—L"',—J>.

Here we have two cases;
First case at:

1 3 31 1 3
=/ + = 1+ = m. =—.— — —
Yoo =L+ 272 T Mty
And it has four degenerate states.
Second case at:

: 1 1 1 1
Join =t=8=l=g=5 = my=9.—
And it has two degenerate states.
Start with the highest value j = %, S0
coupled uncoupled
[im;) [m,,m.)
1
)y - 1,_>
22 ’ 7

Using the relation: J N

j,mj>=h\/j(j+1)—mj(mji1)
33\, /0 o1
2,2> =(L_+s_) 1,2> *
LHS of (*) implies:

1/2
33\, {3 3 .33 } 3 1>
— =) =| =(=+)—=(=1 ——)'=+/3
2 2> 2(2 ) 2(2 ) 22 3
And the RHS of (*) implies:

(LA_+SA_) ‘1;> - ‘1;> +S ‘1;>

TEI NS AN S BN S T
= [ 1(1+1)-1(1-1) | ‘0,2> + [2(2“)_2(2_1)}

m, i1> , one finds in the
coupled representation:

A

J

A

31>.
22 (A)

1,— ;> - ﬁ‘o,l>+1

2
Equate the equations (A) and (B), we have:

31 2] 1 1 1 2y \F
oV =20+ = - =) = Y a+ Y
22> 3 2> ﬁ 2> \E L0 3 uf

What is the last equation mean? The last equation indicates that the eigen state

1,s)|my, m,).

1
-3) ®

j,mj> isa

linear combination of the eigen states

11
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31 2 |1 1 2y !
e A e (Vo ~ ) =Y e Y
22> 3 2> 2> 3 10 3 b
N — ——

(.
s j> Cl |m|,ms> C2 |m|,m5>

Isci+c;=1? IsJ=L+s? Ism;=m +m7?

Check your expression:

H.W. Prove the following

o) s

303 1
PN '= _15_7 :Y
‘2 2> ‘ 2> P

These are the last two states for the value |

= % . Note that the degeneracy is

max

3
d,, :2><§+1:4

For the second case, start with the maximum one

11 1 .
, 2,2> with Jmm—§ and we will

suppose that it take the linear combination form:

1,1>' =C, 0,1> +cC,
22 2

From the normalization we have
1111 2
'<a 7>' = ‘Cl ‘ +

2222

And from the orthogonality with the state

1
1,- 2> :C1Y1,0a+CzY1,1ﬂ

3 1
—— /" we have

.<3,1‘1,1>,:f \fz—o = o, =2,
22122

From both, we have
1

c, =%
3
Finally, we reach the relation:

)t~ frue

Using the lowering operator, we can have:

11 ] ] 2] 1 ]
2 2> 3 2> \m 2> \g o/ 3

12
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a
Suppose we measure S, on a system in some state |X> = (b] . Postulate 2 says that the possible

results of this measurement are one of the S, eigenvalues: +7#/2 or —7#/2. Postulate 3 says the probability

(0 1)(:]2

as a result of this measurement, which found —7%/ 2, the initial state |X> collapses to ‘~L> .

2
of finding, say —#/2, is Prob(find —#/2) = ‘<»L| Y >‘ = = |b|2 . Postulate 4 says that,

But suppose we measure S_? (Which we can do by rotating the SG apparatus.) What will we find?
Answer: one of the eigenvalues of S, which we show below are the same as the eigenvalues of S :
+h/2 or —h/2. (Not surprising, since there is nothing special about the z-axis.) What is the probability
that we find, say, S, = +7/2? To answer this we need to know the eigenstates of the S_ operator. Let's
call these (so far unknown) eigenstates ‘T(x)> and ‘»L(X)> (Griffiths calls them ‘X(f)> and ‘XSX)>)- How do

we find these?
Answer: We must solve the eigenvalue equation:

S x) =2]x).

A 0 1
where A, are the unknown eigenvalues. In matrix form (SX ) = z( j and

=" = which gives,
N )21 o)lb b s
0 h/2)\fa a _ ) -A h/2\(a
= A which can be rewritten as =0
/2 0 b b /2 —-A J\b

In linear algebra, this last equation is called the characteristic equation.

ni2 -\ ni2 -\
M—(r/2) =0 = r=%h/2

As expected, the eigenvalues of S, are the same as those of S, (or S).

— h/zj _‘—x ni2

This system of linear equations only has a solution if Det[ ‘ =0. So

Now we can plug in each eigenvalue and solve for the eigenstates:

e 50 = e 50 -3 - e
Sowe have [100) = %@ and |4 = %CJ

1
Now back to our question: Suppose the system in the state ‘T(Z)> = [0] , and we measure S_. What is the

probability that we find, say, S, = +7/2? Postulate 3 gives the recipe for the answer:

500,

2

Prob(find S, = +#/2) = |( 1% 1 >\2 - + =12

_‘ﬁ

13
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a
Question for the student: Suppose the initial state is an arbitrary state |x> = (bj and we measure S_.

What are the probabilities that we find S, = +7/2 and —7/2?

Let's review the strangeness of Quantum Mechanics.

1
Suppose an electron is in the Sy = +7/2 eigenstate ‘T(X)> = %[J . If we ask: What is the value of S,?

Then there is a definite answer: +7/2. But if we ask: What is the value of S_, then this is no answer. The
system does not possess a value of S . If we measure S , then the act of measurement will produce a
definite result and will force the state of the system to collapse into an eigenstate of S_, but that very act of
measurement will destroy the definiteness of the value of S_. The system can be in an eigenstate of either

S, or S,, but not both.
HW Check the following:

( - ) _h [1 o] Eigen-values symbol Eigen states
z

“2lo0 -1

T

(O lj Eigen-values symbol Eigen states

] )

:%{mﬂ}
) ) F) w0

1
:ﬁ{a—ﬂ}

14
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- Slatip)
T[S
- =la-ip)

15
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EXAMPLE 114
A particle is in the state

I 2
== (7)
V5
Find the probabilities of

(a} Measuring spin-up or spin-down in the z direction.
(b} Measuoring spin-up or spin-down in the y direction.

SOLUTION
(a) First we expand the state in the standard basis |4}:

e L2y, 1 g0 2 1y, E (0

=25 ()= 5 @50 -5 (0= e
7wl =5 )56 =5l 50 f v is
The Born rule determines the probability of measuring spin-up in the z-

direction, which is found from computing |{{+ | ¥} Iz. In this case we have

%

2
—| = -—=038
V515

Application of the Born rule allows us to find the probability of measuring
i

spin-down
PN
Al =(3)(5)=5=12

Notice that the probabilities sum to one, as they should.

(b) To find the probabilities of finding spin-up/down along the y-axis, we can use
the relationship we derived earlier that allows us to express a state written in
the [} inthe S, states. We restate this relationship here:

) =a 4]+ B1-) =« (——-_|+J‘);§|“}’)) +8 (_‘i Iﬁbg : |"-‘*))

- (5) o ()b

For the state in this problem, we find

I+ ¥ =

(=¥ =

October 31, 2013

w=Zie - )b (5

= =+ =)
BV TR

Therefore the probability of measuring spin-up along the y-direction is

19 = () =55 =09

and the probability of finding spin-down is

e 19} = (ﬁ)z Y
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EXAMPLE 11.5
A spin-1/2 system is in the state
1+

1
¥ = — ) —= |

(a}) If spin is measured in the z-divection, what are the probabilities of fin
+h /27 :

(b) Ifinstead, spin is measured in the x -direction, what is the probabitity of fir
spin-up?

(c) Calculate {S,) and {S;) for this state.

SOLUTION
(a) The probability of finding +#4/2 is found from the Bomn rule, and s

caleulate
12 ; 5
L+ 1+1i 1—1i 2
i+ = |—| = (—) (—) =3
V3 V3JINV3 3
The probability of finding —A/2 is given by
R
17 1
—1#iF= ‘— =z
=191l 7 3
(b) In the chapter quiz, you will show that
4+ + =
[Fili=r—e—
NG

From the Born rule, the probability of finding spin up in the x-direction is
|{+2 | #)1°. Now

- (D) (2 110)

(e () () -

_ 241
T 6
Therefore the probability is

SNERIAVELIANE
K T m( 5 )( = )—6

(Exercise: Calculate {{—, | w}iz and verify the probabilities sum to one.}
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(¢) The expectation values are given by

T+ 1 hyll4i l
- =| — & v—gSZ— == — — e
S: g («./E)S‘H-H"‘/S = 2[( )H—) i )]

=

h P+ 1
(5.0 = <¢r|szww>=5[( =)+ _|] (*5) \+>——1—>]
1 1
=315 (F) e el )]
_Epa Nt
=2 (5 3) 6
For §,. recalling that it flips the states (l.e. §; [£) = h/2|T)), we have

14 ), iy B[R e L
thlf)z(73—)53-1+}+—ﬁ51\—)—2[(ﬁ)l )+J§|+>]

and so the expectation value is

1—1i

(S0 = WIS ¥y =3 [(7};) (+ + J,E( !] [(’j{) ) + J% \+>]

) ()]

3

Pauli spin matrices

= I/
Often written: S = —& , Where

0 1 0 i 1 0

c, = , G, =| . , G, =

1 0 Vol 0 0 -1

are called the Pauli spin matrices and they have the following properties
ofzayz:cff:l, Tr(oc,)=0, det‘ai‘z—l,

{Ji ey } =0,0;,+0,0; = 20,

(i,])=(x,y,z)
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