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Spin ½   (Pages 1-12 are needed) 
 
Recall that in the H-atom solution, we showed that the fact that the wavefunction (r)ψ  is single-

valued requires that the angular momentum quantum number be integer: ℓ  = 0, 1, 2..   However, operator 
algebra allowed solutions ℓ  = 0, 1/2,  1,  3/2,  2…  

Experiment shows that the electron possesses an intrinsic angular momentum called spin with ℓ = ½.  
By convention, we use the letter s instead of ℓ for the spin angular momentum quantum number : s = ½.  The 
existence of spin is not derivable from non-relativistic QM.  It is not a form of orbital angular momentum; it 
cannot be derived from L r p= ×

G G G
.  (The electron is a point particle with radius r = 0.)   

Electrons, protons, neutrons, and quarks all possess spin s = ½.   Electrons and quarks are elementary 
point particles (as far as we can tell) and have no internal structure.  However, protons and neutrons are made 
of 3 quarks each.  The 3 half-spins of the quarks add to produce a total spin of ½ for the composite particle 
(in a sense, ↑↑↓ makes a single ↑).  Photons have spin 1, mesons have spin 0, the delta-particle has spin 3/2.  
The graviton has spin 2.  (Gravitons have not been detected experimentally, so this last statement is a 
theoretical prediction.) 
Spin and Magnetic Moment 

We can detect and measure spin experimentally because the spin of a charged 
particle is always associated with a magnetic moment.  Classically, a magnetic moment is 
defined as a vector µ

G
associated with a loop of current.  The direction of µ

G
is 

perpendicular to the plane of the current loop (right-hand-rule), and the magnitude is 
2i A i rµ = = π .   The connection between orbital angular momentum (not spin) and 

magnetic moment can be seen in the following classical model: Consider a particle with 
mass m, charge q in circular orbit of radius r, speed v, period T.  

( )2q 2 r q v q v q v ri , v i i A r
T T 2 r 2 r 2

⎛ ⎞π
= = ⇒ = µ = = π =⎜ ⎟π π⎝ ⎠

 

| angular momentum | = L = p r  =  m v r  ,  so   v r = L/m ,  and q v r q L
2 2 m

µ = = . 

So for a classical system, the magnetic moment is proportional to the orbital angular momentum: 

  
q L (orbital)

2 m
µ =

GG
. 

The same relation holds in a quantum system.  
In a magnetic field B, the energy of a magnetic moment is given by zE B B= − µ ⋅ = − µ

GG
 (assuming 

ˆB Bz=
G

).  In QM, zL m= = .  Writing electron mass as me (to avoid confusion with the magnetic quantum 

number m) and q = –e  we have 
z

e

e m
2 m

µ = −
= ,  where m = − ℓ .. + ℓ.  The quantity B

e

e
2m

µ ≡
=

is called 

the Bohr magneton. The possible energies of the magnetic moment in ˆB Bz=
G

 is given by   

orb z BE B Bm= − µ = − µ . 
 

For spin angular momentum, it is found experimentally that the associated magnetic moment is twice 

as big as for the orbital case:  q S (spin)
m

µ =
GG (We use S instead of L when referring to spin angular 

momentum.)  This can be written z B
e

e m 2 m
m

µ = − = − µ
= . The energy of a spin in a field is 

r 
i 

µ 

r 

i 

 m, q 
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spin BE 2 Bm= − µ  (m = ±1/2) a fact which has been verified experimentally.  The existence of spin (s = ½) 

and the strange factor of 2 in the gyromagnetic ratio (ratio of to Sµ
GG

)  was first deduced from 
spectrographic evidence by Goudsmit and Uhlenbeck in 1925. 
 
Another, even more direct way to experimentally 
determine spin is with a Stern-Gerlach device, (This 
page from QM notes of Prof. Roger Tobin, Physics 
Dept, Tufts U.) 
Stern-Gerlach Experiment  (W. Gerlach & O. Stern, 
Z. Physik 9, 349-252 (1922). 

 

( )F B B= −∇ µ = −µ ∇
G G G G GG Gi i                     

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
z

BzF z
zµˆ

K
 

Deflection of atoms in z-direction is proportional to z-component of magnetic moment µz, which in 
turn is proportional to Lz. The fact that there are two beams is proof that ℓ = s = ½.  The two beams 
correspond to m = +1/2 and m = –1/2.  If ℓ = 1, then there would be three beams, corresponding to m = –1, 0, 
1.  The separation of the beams is a direct measure of zµ , which provides proof that z B2 mµ = − µ  

The extra factor of 2 in the expression for the magnetic moment of the electron is often called the "g-
factor" and the magnetic moment is often written as z Bg mµ = − µ .  As mentioned before, this cannot be 
deduced from non-relativistic QM; it is known from experiment and is inserted "by hand" into the theory.  
However, a relativistic version of QM due to Dirac (1928, the "Dirac Equation") predicts the existence of 
spin (s = ½) and furthermore the theory predicts the value g = 2.  A later, better version of relativistic QM, 
called Quantum Electrodynamics (QED) predicts that g is a little larger than 2.  The g-factor has been 
carefully measured with fantastic precision and the latest experiments give  g = 2.0023193043718(±76 in the 
last two places).  Computing g in QED requires computation of a infinite series of terms that involve 
progressively more messy integrals, that can only be solved with approximate numerical methods.  The 
computed value of g is not known quite as precisely as experiment, nevertheless the agreement is good to 
about 12 places.  QED is one of our most well-verified theories. 
 
Spin Math 

Recall that the angular momentum commutation relations 
2

z i j k
ˆ ˆ ˆ ˆ ˆ[L , L ] 0 , [L , L ] i L (i, j, and k cyclic)= = =  

were derived from the definition of the orbital angular momentum operator: L r p= ×
G G G

. 

The spin operator S
G

 does not exist in Euclidean space (it doesn't have a position or momentum vector 
associated with it), so we cannot derive its commutation relations in a similar way.  Instead we boldly 
postulate that the same commutation relations hold for spin angular momentum: 

2
z i j k

ˆ ˆ ˆ ˆ ˆS S S S S[ , ] 0 , [ , ] i= = = . 
From these, we derive, just a before, that 

2 2 2
s s sŜ

3s m s (s 1) s m s m
4

= + == =         ( since s = ½ ) 

z s s s sŜ
1s m m s m s m
2

= = ±= =   ( since ms = −s ,+s   = −1/2, +1/2 ) 

 

 

 y 

 x 

 z 

B 
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Notation:  since s = ½ always, we can drop this quantum number, and specify the eigenstates of 2Ŝ , and zŜ  
by giving only the ms quantum number.  There are various ways to write this:  

1
| |

2

1
| |

2

1
spin up ( )  

0
| , |

0
spin down ( )  

1

+

±

−

≡ > ≡ + > ≡

≡ − > ≡ − > ≡

⎧ ⎛ ⎞
↑ ≡ ≡⎪ ⎜ ⎟

⎪ ⎝ ⎠= > = > ≡ ⎨
⎛ ⎞⎪ ↓ ≡ ≡ ⎜ ⎟⎪ ⎝ ⎠⎩

s ss m m
χ

χ

α
χ

β
   

These states exist in a 2D subset of the full Hilbert Space called spin space. Since these two states are 
eigenstates of a Hermitian operator, they form a complete orthonormal set (within their part of Hilbert space) 

and any, arbitrary state in spin space can always be written as 
a

a b
b

⎛ ⎞
χ = ↑ + ↓ = ⎜ ⎟

⎝ ⎠
and the 

normalization gives:    
2 21 a b 1χ χ = ⇒ + = . 

. 
Note that: 

( )
1

1 0 1
0

⎛ ⎞
↑ ↑ = =⎜ ⎟

⎝ ⎠
, 

similarly: 
1 , 0↓ ↓ = ↑ ↓ = ↓ ↑ =  

If we were working in the full Hilbert Space of, say, the H-atom problem, then our basis states would 
be sm s mAA .  n is another degree of freedom, so that the full specification of a basis state requires 4 
quantum numbers without n.  (More on the connection between spin and space parts of the state later.) 
[Note on language: throughout this section I will use the symbol zŜ  (and xŜ  , etc) to refer to both the 

observable ("the measured value of zŜ  is / 2+= ") and its associated operator ("the eigenvalue of zŜ  is 
/ 2+= "). 

The matrix form of S2 and Sz in the (z)m basis can be worked out element by element.  (Recall 

that for any operator mn
ˆ ˆA , A m A n=   

s s s s

s s s s

2 2 2 2 2
ss ' m m ' ss ' m m '

z ss ' m m ' z ss ' m m ' z

ˆ ˆ ˆS S S

ˆ ˆ ˆS S S

3 3, , 0 , etc.
4 4
1 1, , 0 , etc.
2 2

↑ ↑ = + δ δ ↓ ↓ = + δ δ ↑ ↓ =

↑ ↑ = + δ δ ↓ ↓ = − δ δ ↑ ↓ =

= =

= =
 

Then in the matrix notation one finds: 

( ) 2 2

2 2

1 0ˆ ˆS S 2 2
ˆ ˆS S 0 1

2 2

1 0
2 0 1

Ŝ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ × − ×⎛ ⎞ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ × − ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞
= ⎜ ⎟

−⎝ ⎠

−
= =

−
=

= = = =

= == =

=

z z
z

z z

α α α βα α α β

β α β β β α β β
 

and 
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( )2 2Ŝ
1 03
0 14

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
=  

Operator equations can be written in matrix form, for instance, 

 zŜ
1 0 1 1
0 1 0 02 2 2

⎛ ⎞⎛ ⎞ ⎛ ⎞
↑ = + ↑ ⇒ = +⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

= = =
 

We are going ask; what happens when we make measurements of zS , as well as xS  and yS ?, (using a Stern-

Gerlach apparatus).  Will need to know: What are the matrices for the operators xS  and yS ?  These are 
derived from the raising and lowering operators: 

( )
( )

1
x 2x y

1x y y 2i

ˆ ˆ ˆˆ ˆ ˆ S S SS S S
ˆ ˆ ˆ ˆ ˆ ˆS S S S S S

i
i

+ −+

− + −

= += +
⇒

= − = −
 

To get the matrix forms of Ŝ+  and Ŝ− , we need a result: 

s s s sŜ s,m s (s 1) m (m 1) s, m 1± = + − ± ±=  

For the case s = ½, the square root factors are always 1 or 0.  For instance,  s = ½, m = −1/2  gives 
( ) ( )( )31 1 1

2 2 2 2s (s 1) m(m 1) 1+ − + = − − = .  Consequently, 

ˆ ˆ ˆ ˆS S S S, 0 and , 0+ + − −↓ = ↑ ↑ = ↑ = ↓ ↓ == = , 

leading to  
S 0, S ,  etc.+ +↑ ↑ = ↑ ↓ = =  

Then: 

( )
ˆ ˆ 0S S 0 1

0 0ˆ ˆ 0S S
Ŝ =+

⎛ ⎞ ⎛ ⎞+ ++ + + − ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− + ⎝ ⎠− + − −+ + ⎝ ⎠⎝ ⎠
= =

=

=
=  

and 

( )Ŝ
0 0
1 0−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
=  

Notice that S+ , S− are not Hermitian. 
Using ( ) ( )1 1

x y2 2i
ˆ ˆ ˆ ˆ ˆ ˆS S S S S S   and    + − + −= + = −   yields 

( ) ( )x y
ˆ ˆS S

0 1 0 i
1 0 i 02 2

−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= =
    These are Hermitian, of course. 

 
H.W. Check the following table: 
 

β α  β  α    

2
−

i α 
2
i β Ŝy

3
4

β  3
4

α 
2Ŝ 

α  0  Ŝ+
1
2

− β 1
2

α Ŝz 

0  β  Ŝ− 1
2

α  1
2

β Ŝx 
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Example: Find the expectation value for the Hamiltonian 2 2 2ˆ ˆ ˆ ˆˆ ( 2 )x y z zH a S S S bS= + − + , where a and 
b are constants. 

Answer: Use the expression; 2 2 2 2ˆ ˆ ˆ ˆ
x y zS S S S= + +  

We can find: 
2 2 2 2

2 2

ˆ ˆ ˆ ˆ ˆˆ ( 3 )
ˆ ˆ ˆ3

x y z z z

z z

H a S S S S bS

aS aS bS

= + + − +

= − +
 

And 

{ }
{ }
{ }

2 2

2               

3 1
               

4 4

ˆ ˆ ˆˆ , 3 ,

  ( 1) 3 ,

  3 , ,

s z z s

s s s

s s s s

H s m aS aS bS s m

as s am bm s m

a a bm s m bm s m

= − +

= + − +

= − + =

 

Then 
ˆ, , , ,s s s s s ss m H s m bm s m s m bm= =  

 
One-electron system 

The Hamiltonian  
2

2o
p ZH
m r

= −  

has the uncoupled wave function , , , , ,s sm s m m s m=A AA A  which identify the angular and 
spin parts of the wave function. m A  is the projection quantum number associated with A  and sm  is 
the projection quantum number associated with s satisfies the relations: 

' '

' '

' '

' '

' ' 2
' '

' '
' '

' ' 2
' '

' '
' '

ˆ', , ', , , , ( 1)

ˆ', , ', , , ,

ˆ', , ', , , , ( 1)

ˆ', , ', , , ,

s s

s s

s s

s s

s s ss m m m m

s z s ss m m m m

s s ss m m m m

s z s s ss m m m m

m s m L m s m

m s m L m s m m

m s m S m s m s s

m s m S m s m m

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ δ δ

= +

=

= +

=

A A

A A

A A

A A

A A AA

A A A AA

A A AA

A A AA

A A A A

A A

A A

A A

 

Aslo, the wave function , , , js j mA  in LS-coupling has similar relations: 

'

'

'

'

' 2
' ' '

' 2
' ' '

' 2
' ' '

'
' ' '

ˆ', ', ', , , , ( 1)

ˆ', ', ', , , , ( 1)

ˆ', ', ', , , , ( 1)

ˆ', ', ', , , ,

j j

j j

j j

j j

j j ss jj m m

j j ss jj m m

j j ss jj m m

j z j j ss jj m m

s j m L s j m

s j m S s j m s s

s j m J s j m j j

s j m J s j m m

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ δ δ

= +

= +

= +

=

AA

AA

AA

AA

A A A A

A A

A A

A A

 

 In which J L S= +
JG JG JG

, and  
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2 2 2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 . 2x y z z zJ J J J L S L S L S L S L S L S+ − − += + + = + + = + + + + ,   

Note that , , , js j mA are not eigenfunctions of ˆ
zL  or ˆ

zS . , , , js j mA are said to be in the coupled 

representation. 

2

2 2

2 2

2 2

2 2 1 1
sin

sin sin

ˆ ˆ ˆ ˆ ˆ ˆ( ) / 2 , ( ) / 2
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ , ( 1) ( 1) , 1

cosˆ ˆ ˆ
sin

ˆ

ˆ

y x

z z

z z

i
x y

z

L L L i L L L

L L L L L

L L L L L

L l m l l m m l m

L L iL e i

L i

L

ϕ

∂ ∂ ∂
θ

θ ∂θ ∂θ θ ∂φ

∂ θ ∂
∂θ θ ∂φ

∂
∂φ

+ − + −

− +

+ −

±

±
±

+

= − = +

= − −

= − +

= + − ± ±

⎡ ⎤
≡ ± = ± ±⎢ ⎥

⎣ ⎦

= −

⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

=

=

=

=

=

 

 

2 2 2 2 2 2 2 2

2 2

2 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 . 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,

ˆ | , ( 1) | ,
ˆ ˆ| , | , ; | ,

x y

x y z z z

x y z y z x z x y

j j

z j j j z j j

J J iJ

J J J J L S L S L S L S L S L S

J J i J J J i J J J i J J J i J

J j m j j j m

J j m m j m J j m m

±

+ − − +

= ±

= + + = + + = + + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = ⇒ × =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

> = + >

> = > > =

G G G
= = = =

=

=

2 2 2 2 2

| ,
ˆ | , ( 1) ( 1) | , 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 2 , , , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , 0,

j

j j j j

z z z

x y z

j m

J j m j j m m j m

J J J J J J J J J

J J J J J J J J J J

±

+ − − − + +

+ −

>

> = + − ± ± >

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

=

= = =
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Addition of Angular momentum 

1- Two spin
1
2  particles 
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2 2

ˆ

ˆ ( 1)   , 1, 2                              (I)
iz i i i i i

i i i i i i i

s s m m s m

s s m s s s m i

=

= + =

=

=
 

1 1 2 2 1 1 2 2                                                  (II)s m s m s m s m≡  

1 2
1
2

s s= =    

)III(                               

1 1 1 2 2 1 1 1 2 2

2 2
1 1 1 2 2 1 1 1 1 2 2

2 1 1 2 2 2 1 1 2 2

2 2
2 1 1 2 2 2 2 1 1 2 2

ˆ

ˆ ( 1)
ˆ

ˆ ( 1)

z

z

s s m s m m s m s m

s s m s m s s s m s m

s s m s m m s m s m

s s m s m s s s m s m

=

= +

=

= +

=

=

=

=

  

)IV              (

( )
( ) ( )

( ) ( )
( )

1 1 2 2 1 2 1 1 2 2

1 1 1 2 2 2 2 2 1 1

1 1 1 2 2 2 2 2 1 1

1 2 1 1 2 2

1 1 2 2

ˆ ˆ ˆ

ˆ ˆ
z z z

z z

s s m s m s s s m s m

s s m s m s s m s m

m s m s m m s m s m

m m s m s m

m s m s m

= +

= +

⎡ ⎤= +⎣ ⎦
= +

=

=

=

=

  

) V(                                                       1 2m m m= + 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2

22 2 22ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
x x y y z zs s s s s s s s s= + = + + + + +  

  
 

( )
1 2

1 2 1 2

1 2

1 2 1 2

11   
110    triplet states Symmetric, Ortho or Even
2

1 1

1  00       singlet states (Antisymmetric, Para or Odd)
2

⎧ ⎫=
⎪ ⎪
⎪ ⎪⎡ ⎤= = +⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪− = ⎭⎩

⎡ ⎤= = −⎣ ⎦

S

A

α α

χ β α α β

β β

χ β α α β

  



Prof. Dr. I. Nasser                                          Phys- 551  (T-112)                                       October 31, 2013 
Spin31.doc   

 10

( ) ( )( )

( ) ( ) ( ) ( )

( )

1 2 1 2 1 2 1 2 1 2

2 1 1 2 1 1 1 2 2 1 2 2

2 1 2 1 1 2 1 2

1 1
2 2

1
2

1 1 1 11
2 2 2 22

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ                              

                              0

z z z

z z z z

S s s

s s s s

α β β α α β β α

β α α β α β β α

β α α β α β β α

− = + −

= − + −⎡ ⎤⎣ ⎦

= + − − ==

  

 
 

H.W.  

( ) ( )
( )

22 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 2
1 2 1 2 1 2 1 2

1
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

z z

z z

S s s s s s s s s s s s s s s

s s s s s s s s

+ − − +

+ − − +

⎡ ⎤= + = + + ⋅ = + + + +⎣ ⎦

= + + + +
  

 
H.W. check the following  

( )2
1 2 1 2

1
2

ˆ 0 ,S ψ ψ ψ α β β α= = −  

( )
( ) ( )

( ) ( )

2 2
1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

3 3 1
4 4 4

1 1
2 2

1 1
2 2

ˆ ˆ ˆ ˆ, , 2 2

ˆ ˆ 0

ˆ ˆ 0

z zs s s s

s s

s s

ψ ψ ψ ψ ψ ψ

α β β α α β

α β β α β α

+ −

− +

= = = −

− = −

− = −

  

  

( ) ( )

( ) ( )

2 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1
2 2

1 1
2 2

ˆ 1(1 1) ,

ˆ 0

+ = + +

+ = +

=

=z

S

S

α β β α α β β α

α β β α α β β α
. 
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Q: What is the configuration for the p -orbital (A =1) for the electron in the Hydrogen atom 
in LSJ-coupling scheme? 

Answer: The wave function of the Hydrogen atom can be given by: 

,( ) ( , ) , , , , , , , , , , ,total n m s s jR r Y n m s m n m s m n s j mθ ϕ χ±Ψ ≡ = = =
AA A A AA A A  

Where 1 1
2 2

1, , 1 , , 1, ,js j m j j j= = = ± = − −A " .  

Here we have two cases; 
First case at: 

max
1 3 3 1 1 3

      , , ,
2 2 2 2 2 2

1 m jj s = ⇒ = − −= + = +A  

And it has four degenerate states. 
Second case at: 

min
1 1 1 1

      ,
2 2 2 2

1 m jj s = ⇒ = −= − = −A  

And it has two degenerate states. 
Start with the highest value max

3
2

j = , so 

1,1
3 3
2 2

'

coupled           uncoupled

,              ,

11,
2

j s

Y

j m m m

α= =

A  

Using the relation: ˆ , ( 1) ( 1) , 1j j j jJ j m j j m m j m± = + − ± ±= , one finds in the 
coupled representation: 

( ) 11,
2

3 3 ˆˆ ˆ,
2 2

'J L S+− −− =                                         (*) 

LHS of (*) implies: 
1/ 2

3 1 3 1
, ' , '

2 2 2 2
3 3 3 3 3 3ˆ , ( 1) ( 1) 3
2 2 2 2 2 2

'J =
⎡ ⎤+ − −⎢ ⎥− ⎣ ⎦

=                                        (A) 

And the RHS of (*) implies: 

( )
1/ 2

1/ 2

1 1 11, 1, 1,
2 2 2

1 1 1 1 1 1 1 1                       0, ( 1) ( 1) 1, 2 0, 1,                   (B)
2 2 2 2 2 2 2 2

1(1 1) 1(1 1) 1

ˆˆˆˆ L SL S− − − −+ =

⎡ ⎤⎡ ⎤= + + − − − = + −⎣ ⎦ ⎢ ⎥⎣ ⎦
+ − −

+

 
Equate the equations (A) and (B), we have: 

1,0 1,1
3 1, '
2 2

2 1 1 1 2 10, 1,
3 2 3 2 3 3

Y Yα β= + − = +  

What is the last equation mean? The last equation indicates that the eigen state , jj m  is a 

linear combination of the eigen states , ,l sl s m m .  
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Check your expression: N N N N
1,0 1,1

, 1 2

3 1, '
2 2

2 1 1 1 2 10, 1,
3 2 3 2 3 3

, ,jj m l l
c cm m m ms s

Y Yα β= + − = +
�	
  

Is 2 2
1 2 1c c+ = ?    Is J L s= + ?    Is j l sm m m= + ?     

  
H.W. Prove the following  

      
1, 1 1,0

1, 1

3 1 1
, '

2 2 2

3
, '

2 2

1 1 2 1 21, 0,
3 2 3 3 3

3 11,
2

Y Y

Y

α β

β

−

−

− −

−

= − + = +

= − − =
     

These are the last two states for the value max
3
2

j = . Note that the degeneracy is 

3/ 2
3

1 4
2

2d + == ×  

For the second case, start with the maximum one, 
1

, '
2 2
1

, with min
1

   
2

j = and we will 

suppose that it take the linear combination form: 

1 2 1 21,0 1,1
1

, '
2 2
1 1 10, 1,

2 2
c c c cY Yα β= + − = +  

From the normalization we have 

1 2

2 21 1
, , '

2 2 2 2
1 1' 1c c= + =  

And from the orthogonality with the state 
1

, '
2 2
3

 we have 

1 2 2 1

1 1
, , '

2 2 2 2
3 1 2 1' 0 2

3 3
c c c c= + = ⇒ = −  

From both, we have 

1

1
3

c = ±  

Finally, we reach the relation: 

1,0 1,1
1

, '
2 2
1 1 1 2 1 1 20, 1,

3 2 3 2 3 3
Y Yα β= − + − = +−  

Using the lowering operator, we can have: 

1,0 1, 1
1

, '
2 2
1 1 1 2 1 1 20, 1,

3 2 3 2 3 3
Y Yβ α−− = − − − = −  
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Suppose we measure Sz on a system in some state 
a
b

⎛ ⎞
χ = ⎜ ⎟

⎝ ⎠
 .  Postulate 2 says that the possible 

results of this measurement are one of the Sz eigenvalues: / 2 or / 2+ −= = . Postulate 3 says the probability 

of finding, say / 2−= , is ( )
2

2 2a
Prob(find /2)  =  | 0 1 b

b
⎛ ⎞

− ↓ χ = =⎜ ⎟
⎝ ⎠

=  .  Postulate 4 says that, 

as a result of this measurement, which found / 2−= , the initial state χ collapses to ↓ . 

But suppose we measure xS ?  (Which we can do by rotating the SG apparatus.)  What will we find?  

Answer: one of the eigenvalues of Sx, which we show below are the same as the eigenvalues of zS : 
/ 2 or / 2+ −= = .  (Not surprising, since there is nothing special about the z-axis.)  What is the probability 

that we find, say, xS / 2= + = ?  To answer this we need to know the eigenstates of the xS  operator.  Let's 

call these (so far unknown) eigenstates (x)↑  and (x)↓  (Griffiths calls them (x)
+

χ  and (x)
−

χ ).  How do 

we find these?   
Answer: We must solve the eigenvalue equation: 

xS χ = λ χ ,  

where λ  are the unknown eigenvalues.  In matrix form ( ) 1

2 1 0

0ˆ
xS

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
=  and 

( ) 1

2 1 0

0ˆ
xS

a a a
b b b

λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=  which gives,  

0 / 2 a a
/ 2 0 b b

⎛ ⎞⎛ ⎞ ⎛ ⎞
= λ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

=
=

   which can be rewritten as  
/ 2 a

0
/ 2 b

−λ⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟−λ⎝ ⎠⎝ ⎠

=
=

.   

In linear algebra, this last equation is called the characteristic equation.   
 

This system of linear equations only has a solution if 
/ 2 / 2

Det 0
/ 2 / 2

−λ −λ⎛ ⎞
= =⎜ ⎟−λ −λ⎝ ⎠

= =
= =

.   So 

( )22 / 2 0 / 2λ − = ⇒ λ = ±= =  

As expected, the eigenvalues of xS  are the same as those of zS  (or yS ). 
Now we can plug in each eigenvalue and solve for the eigenstates: 

0 1 a a
a b

1 0 b b2 2
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⇒ =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

= =
   ;       

0 1 a a
a b

1 0 b b2 2
⎛ ⎞⎛ ⎞ ⎛ ⎞

= − ⇒ = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

= =
.  

So we have (x) (x)1 11 1and
1 12 2

⎛ ⎞ ⎛ ⎞
↑ = ↓ =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

Now back to our question: Suppose the system in the state (z) 1
0

⎛ ⎞
↑ = ⎜ ⎟

⎝ ⎠
, and we measure xS .  What is the 

probability that we find, say, xS / 2= + = ?  Postulate 3 gives the recipe for the answer: 

( )
2

2 2(x) (z) 1 1
x 2 2

1
Prob(find S /2)  =  | 1 1 1/ 2

0
⎛ ⎞

= + ↑ ↑ = = =⎜ ⎟
⎝ ⎠

=  
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Question for the student: Suppose the initial state is an arbitrary state 
a
b

⎛ ⎞
χ = ⎜ ⎟

⎝ ⎠
 and we measure xS .  

What are the probabilities that we find xS / 2= + =  and / 2− = ? 
 
Let's review the strangeness of Quantum Mechanics. 

Suppose an electron is in the Sx = / 2+ =  eigenstate (x) 1
2

1
1

⎛ ⎞
↑ = ⎜ ⎟

⎝ ⎠
.   If we ask: What is the value of Sx? 

Then there is a definite answer: / 2+ = .  But if we ask: What is the value of zS , then this is no answer.  The 

system does not possess a value of zS .  If we measure zS , then the act of measurement will produce a 

definite result and will force the state of the system to collapse into an eigenstate of zS , but that very act of 

measurement will destroy the definiteness of the value of xS .  The system can be in an eigenstate of either 

xS  or zS , but not both. 
HW Check the following: 
 

Eigen states  symbol  Eigen-values  

11
02

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
+ 

2
=  

01
12

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
− 

2
−
=  

( ) 1 0
2 0 1

ˆ
zS

⎛ ⎞
⎜ ⎟

−⎝ ⎠
= = 

 
 

Eigen states  symbol  Eigen-values  

{ }

1 1 01 1
1 0 12 2

1
2

α β

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

= +

  x+
2
=  

{ }

1 1 01 1
1 0 12 2

1
2

α β

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

= −

 
x−

2
−
=  

( ) 1

2 1 0

0ˆ
xS

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
= 
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Eigen states  symbol  Eigen-values  

{ }

1 1 01 1
0 12 2

1
2

i
i

iα β

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

= +

  
y+

2
=  

{ }

1 1 01 1
0 12 2

1
2

i
i

iα β

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

= −

 
y−

2
−
=  

( ) 2 0

0ˆ
y

i

i
S

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
= 
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          1 1
2 3 3 3

⎡ ⎤= + =⎢ ⎥⎣ ⎦
= =  

 
 
Pauli spin matrices  
Often written: S

2
= σ

G = G
 , Where 

x y z

0 1 0 i 1 0
, ,

1 0 i 0 0 1
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

σ = σ = σ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

are called the Pauli spin matrices and they have the following properties: 

{ }

2 2 2 , ( ) 0, det 1,

, 2 , ( , ) ( , , )

= = = = = −

= + = =

1x y z i i

i j i j j i ij

Tr

i j x y z

σ σ σ σ σ

σ σ σ σ σ σ δ
 

 


