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Schrödinger Equation  
in 

Three Dimensional Square Well 
 

In the figure, consider a 3d rectangular "infinite square well" with the dimensions (a, b, c) and 
the potential boundary conditions: 
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As we have the "boundary" condition that ψ  be zero in the 
infinitely disallowed region outside the box. Inside the box, 
where the potential is zero, we have the Schrödinger's 
equation:  
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Since the Hamiltonian is the sum of three terms with totally separate variables, we try a product 
wavefunction:  

( , , ) ( ) ( ) ( )x y z X x Y y Z zψ =  
As usual with separation of variables, the Schrödinger's equation separates into three terms, one 
only in x, the next only in y, the last only in z:  
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where 
x y zE E E E= + +  

These familiar differential equations have the usual solution:  

 
Now we apply our boundary conditions  
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Which implies: 
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The resulting normalized wavefunctions are:  
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With: 
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H.W.: Check the normalization: 
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It is often convenient to describe wavefunctions in terms of "k-space" or "n-space", that is we 
label wavefunctions by k=(kx,ky,kx) vector or by n=(nx,ny,nz). In either case there is a lattice of 
points in the plane each one of which represents a possible wavefunctions. In the case of n-
space, the lattice consists of those points with whole number x,y,z values. In the case of k-space, 
the lattice points are spaced by /aπ , /bπ , /cπ . (k-space goes by many different names. The 
momentum p k=  is closely related to k, hence "momentum space". k is also closed related to 
"reciprocal lattice space". Since 2 /k π λ= , k is often called a "wave number". The main idea 
for us is that 2E k∝  
Here is an energy level diagram showing the relationship between n=(nx,ny,nz) and the energy 
for a cube ( )a b c L= = = square well.  
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Example: Discuss the number of energy levels in a small energy range dE for a particle in a 
very large potential box. 
Solution: For simplicity we shall consider a cubical potential box of side a. Then, as we saw in 
the previous problem, the energy levels of a particle in the box are given by  
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where 1n , 2n , and 3n  are integers. We note that for a small box (i.e., small value of L ) the 
energy levels are spaced widely, as shown in Fig.1(a). But for a very large box, as is the case for 
molecules of a gas in a container or for electrons in a metal, successive levels are so close that 
they practically form a continuous spectrum, as shown in Fig. 1(b). 
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Fig. 1. Energy levels for (a) a small potential box, (b) a large potential box. 

 
Our problem is to find how many energy levels there are in a small energy range dE when the 
potential box is very large. This problem is very similar to that of finding the modes of 
oscillations of waves trapped in a cavity whose dimensions are much larger than the wavelength. 
 
Let us introduce the coordinates , ,ξ η ζ  in a certain representative space (Fig. 2—l1); each 
point, of coordinates 1 2 3, ,n n nξ η ζ= = = , represents an energy level, and to each point there 

corresponds a cell of unit volume in this representative space. Let us define 2 2 2 2k ξ η ζ= + + , 
and say that the number of points having positive integral coordinates and lying on the surface 
of a sphere of radius k  give the different states associated with the energy 
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To find the number of states ( )N E  with energy between zero and E, we must find the 

volume of an octant ( 1
8

) of a sphere of radius k , since only positive values of 1n , 2n , and 3n  

are allowed. Thus, remembering that / 2h π= , we obtain 



Prof. Dr. I. Nasser                                            Phys571  (T-131)                                 September 18, 2013 
Square_well_Phys571_T131 

 5

3/ 2
3 3/ 2

2

1 4 8( ) ,
8 3 6

mN E k V E
h

ππ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

where 3V L=  is the volume of the potential box. The number of states with energy between E 
and E + dE is obtained by differentiating the above expression. This yields 
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It is convenient to write ( ) ( )dN E g E dE= , so that 
3/ 2

1/ 2
2

( ) 2( ) 4dN E mg E V E
dE h
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is the number of states per unit energy interval at the energy E. The function ( )g E  is plotted in 
Fig. 2—12. The area of a strip of width dE  gives the corresponding number ( ) ( )dN E g E dE=  
of states in such an energy range. The area under the curve from E = 0 to E ε=  gives the total 
number of states in that energy interval. The last equation has been used extensively in different 
fields of physics, such as: solid state, statistical mechanics, quantum mechanics etc. 
In some instances it is more convenient to use the number of states within the momentum 
interval dp between p and p + dp. Recalling that the particle within the box acts as a free 
particle, we have E = p2/2m. Defining g(p) so that ( ) ( ) ( )dN E g p dp g E dE= = , we have 

2
3( ) ( ) 4dE Vg p g E p

dp h
π= =  

This expression applies as well for the number of modes of longitudinal waves trapped in a 
cavity of volume V. In such cases it is more convenient to use the frequency ν . We recall that 

/p λ=  and /cν λ= , where c  is the phase velocity of the waves. Therefore, defining ( )g ν  
so that ( ) ( )g d g p dpν ν = , we have 

2
3( ) ( ) 4dp Vg g p

d c
ν πν

ν
= =  

which is a very useful relation. Also, using E ω= , one can has 
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2
3 3
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2
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c

ω ω
π
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The following is another simple way to calculate the density of state of cubic box with length L: 
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Note that: , / 2p k h π= =  
  
 


