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Schrédinger Equation
in
Three Dimensional Square Well

In the figure, consider a 3d rectangular "infinite square well" with the dimensions (a, b, ¢) and

the potential boundary conditions: A
z

0,  O(x(a, 0y (b, 0z
ViX.,y,z)=

00, otherwise

V=00 V=0 ol V7
—>

As we have the "boundary" condition that ¥ be zero in the / b X

infinitely disallowed region outside the box. Inside the box, y / —>
where the potential is zero, we have the Schrodinger's a
equation:
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2m\ox? oy* oz’
Since the Hamiltonian is the sum of three terms with totally separate variables, we try a product
wavefunction:

}y/(x,y,z)zEy/(x,y,z)

w(X,y,2)=X (X)Y (y)Z(z)
As usual with separation of variables, the Schrodinger's equation separates into three terms, one
only in X, the next only in Y, the last only in z:

d2X (x) , 2mE
Cb(—2+kXX(X):O, kX: hzx,
d2Y (y) . » 2mE
——22+k)Y (y)=0, k;j=—H(",
d h
d?z@z) ., , 2mE
dz—z‘i'kZZ(Z):O, kZ: hzz
where
E=E,+E, +E,
These familiar differential equations have the usual solution:
X&) = Agsin(kyw)+ Byoos(kpx)
Y{y) — Aysin{kyy}+ Bycos(kyy)
Z(z) = A;sn(k;z)+ B,cos(ksz)

Now we apply our boundary conditions
v(0,y,2)=w(@,y,z)=0 forally, andz

w(x,0,z)=w(Xx,b,z)=0 forallx, andz
w(X,y,0)=w(x,y,c)=0 forallx, andy
Which implies:
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n
X ()= [Fsink,x, k, =27 0 —12,...
a a
2 . n,z
Y(y): Esmkyy, ky :T, ny=1,2,--~
Z(2)=|2sink,z K, =227 n =12,
C C
The resulting normalized wavefunctions are:
- o n, =12,
V(X,y,z2)= %sin(n"aﬁxjsin[ ; stin(n;”Zj, :y ii’i’

With:

2.2(n 2 n 2 n. 2
E:EX+Ey+EZ:h”[x Myn
2m

H.W.: Check the normalization:
) a b c
[ 1w Paxdydz = [1X ) Pdx [IY (y)Pdy [1Z (2)Pdz =1
e 0 0 0

It is often convenient to describe wavefunctions in terms of "k-space" or "n-space", that is we
label wavefunctions by k=(Kky,ky,Kx) vector or by n=(ny,ny,n,). In either case there is a lattice of
points in the plane each one of which represents a possible wavefunctions. In the case of n-
space, the lattice consists of those points with whole number X,y,z values. In the case of k-space,
the lattice points are spaced by z/a, n/b, z/c . (k-space goes by many different names. The
momentum P = 7K is closely related to k, hence "momentum space". K is also closed related to
"reciprocal lattice space". Since K =27/ A4, k is often called a "wave number". The main idea
for us is that E oc k *

Here is an energy level diagram showing the relationship between n=(ny,ny,n,) and the energy
for a cube (a =b=c=L ) square well.

K’
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Yo, n, n, n, n’ degeneracy
i 1 1 1 3 1
Viin 1 1 2 6
Vi 1 2 1 6 3
Yo 2 | | 6
Yian 1 2 2 9
Yaia 2 1 2 9 3
238 2 2 1 9
Vi3 1 1 3 11
Yis1 1 3 1 11 3
Wi 3 1 1 11
229 2 2 2 12 1

Example: Discuss the number of energy levels in a small energy range dE for a particle in a
very large potential box.

Solution: For simplicity we shall consider a cubical potential box of side a. Then, as we saw in
the previous problem, the energy levels of a particle in the box are given by

E :{%j(nf+n22+n32):E1(n12+n22+n32)

where N, Nn,, and N, are integers. We note that for a small box (i.e., small value of L ) the

energy levels are spaced widely, as shown in Fig.1(a). But for a very large box, as is the case for
molecules of a gas in a container or for electrons in a metal, successive levels are so close that
they practically form a continuous spectrum, as shown in Fig. 1(b).

TABLE 1 Energy Levels and Degeneracies in a
Cubical Box (E, =7"7"/2mL")

Energy | Combinations of n1, g, n3 | Degeneracy, g

3E (1,1, 1) 1
ﬁEl (2: 1: 1)(11 2,- 1)(1: 1: 2) 3
9K} (2,2, 1)(2, 1, 2)(1, 2, 2) 3
11E; (Sr 1: 1)(11 3? 1)(1: 1: 3.) 3
12E, (2,2 2 1
14E1 (13 2; 3)(31 2} 1) (21 3} l) 6

(1,3, 221,33, 1,2
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Fig. 1. Energy levels for (a) a small potential box, (b) a large potential box.

Our problem is to find how many energy levels there are in a small energy range dE when the
potential box is very large. This problem is very similar to that of finding the modes of
oscillations of waves trapped in a cavity whose dimensions are much larger than the wavelength.

Let us introduce the coordinates &, 7, in a certain representative space (Fig. 2—11); each
point, of coordinates & =N, 7 =nN,,{ =N, represents an energy level, and to each point there

corresponds a cell of unit volume in this representative space. Let us define k> = &> + 1> + &7,

and say that the number of points having positive integral coordinates and lying on the surface
of a sphere of radius k give the different states associated with the energy

212
E="" > o k=L mE™
2mL 7h

et e)

L

o "o +—dE

‘/

Calculation of the number of states with wavermmber lessthan ko

Density of energy levels
in & large cubical potential box.

To find the number of states N (E) with energy between zero and E, we must find the
1 . . o
volume of an octant (g) of a sphere of radius Kk , since only positive values of N, n,, and n,

are allowed. Thus, remembering thati =h /27 , we obtain

4
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3/2
N (E):%Gm@j:%v (i—”;j E32,

where V =L’ is the volume of the potential box. The number of states with energy between E
and E + dE is obtained by differentiating the above expression. This yields

om V2
dN (E) =42/ (h—zj E'*dE.
It is convenient to write dN (E ) =g (E )dE , so that

dN (E) am Y,
Ey=— 4N |22 | E
g(e)= M0 (h]

is the number of states per unit energy interval at the energy E. The function g (E) is plotted in
Fig. 2—12. The area of a strip of width dE gives the corresponding number dN (E ) =g (E )dE
of states in such an energy range. The area under the curve from E = 0 to E = & gives the total
number of states in that energy interval. The last equation has been used extensively in different
fields of physics, such as: solid state, statistical mechanics, quantum mechanics etc.

In some instances it is more convenient to use the number of states within the momentum
interval dp between p and p + dp. Recalling that the particle within the box acts as a free
particle, we have E = p*/2m. Defining g(p) so that dN (E)=g(p)dp = g (E )JE , we have

de V 5
9(p)=9(E) dp h° 4rzp
This expression applies as well for the number of modes of longitudinal waves trapped in a
cavity of volume V. In such cases it is more convenient to use the frequency v . We recall that
p=#h/A and v=C/A, where C is the phase velocity of the waves. Therefore, defining g (v)

so that g(v)dv =g(p)dp, we have

2

dp V
90)=9(p) =5 4mv
v C

which is a very useful relation. Also, using E = %@, one can has g (o) =

v w
(27[)3C3

The following is another simple way to calculate the density of state of cubic box with length L:

L

k,L=2zn, = dn, =—dk,,
2r
k d L dk
yL 227Z'ny = ny Zg y>
L
k,L=2zn, = dn, =—dk,
2
L3
d’n=dn,dn dn, = —d ’k

(27)
VAR Voo,

= d’k = d’p, d’p=4zpid
27 27h
3 3 p p p p

Note that: p=#k, h=h/2x



