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Integral Equations (Chapter 16)

Words from Arfken’s book: Why do we bother about integral equations? After all, the
differential equations have done a rather good job of describing our physical world so far. There are
several reasons for introducing integral equations here.”

We have placed considerable emphasis on the solution of differential equations subject to
particular boundary conditions. For instance, the boundary condition at r = 0 determines whether
the Neumann function N,(r) is present when Bessel’s equation is solved. The boundary condition
for r— oo determines whether the I,(r) is present in our solution of the modified Bessel equation.
The integral equation relates the unknown function not only to its values at neighboring points
(derivatives) but also to its values throughout a region, including the boundary. In a very real sense
the boundary conditions are built into the integral equation rather than imposed at the final stage of
the solution. It can be seen that the Green’s function are constructed, that the form of the function
depends on the values on the boundary. The integral equation, then, is compact and may turn out to
be a more convenient or powerful form than the differential equation. Mathematical problems such
as existence, uniqueness, and completeness may often be handled more easily and elegantly in
integral form. Finally, whether or not we like it, there are some problems, such as some scattering,
diffusion and transport phenomena that cannot be represented by differential equations. If we wish
to solve such problems, we are forced to handle integral equations. Finally, an integral equation
may also appear as a matter of deliberate choice based on convenience or the need for the
mathematical power of an integral equation formulation.

Classification

* Let g(x) be a given function, K(x, 7) be a given function of two variables, and F(x) be an unknown
function. The Volterra equation of the first kind reads

wX
g(x) = [ dt K(x, 1) f(1).
st
* Volterra equation of the second kind is

=X

e(x) = f(x) + [ dr K(x.0f (D).

wt il

* The Fredholm equation of the first kind reads

b
g(x) = [ dr K(x.0)f(1).

at

* Fredholm equation of the second kind is

b
g(x) = f(x) + [ dr K(x.1)f(1).

£a
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1- Introduction (Classifications)
The most general type of integral equation is written in the form,
b(x)
B Ju(x)=f (x)+ 2 [ K (x.p)u(y)dy. (1)

We are given functions 4(x), u(x), K(x, ), and wish to determine f{x). The quantity 4 is a parameter
(eigenvalue), which may be complex in general. The function K (x,y) is called the kernel of the

integral equation.

We shall assume that /(x) and u(x) are defined and continuous on the interval a <x < b(x), and that
the kernel is defined and continuous on @ <x < b and a <y < b. Here we will concentrate on the
problem for real variables x and y. The functions may be complex-valued, although we will
sometimes simplify the discussion by considering real functions. However, many of the results can
be generalized in fairly obvious ways, such as relaxation to piecewise continuous functions, and
generalization to multiple dimensions.

=>» If the limits of integration are fixed, we call the equation a Fredholm equation; if one limit is
variable, it is a VVolterra equation.

=>» If the unknown function appears only under the integral sign, we label it first kind. If it
appears both inside and outside the integral, it is labeled second kind.

The Volterra integral equation, is derived when the general equation (1) has the
property b (x )=x . When /& (x )=0 we incur a Volterra equation of the first kind, shown as the

following,

o (x) = [K (rov Y (3 )by @)
And a Volterra equation of the sgcond kind is shown when % (x ) =1.

w(x)=f ()4 [K (v ) (3 )y 3)

When f (x ) =0, the equation is said to be homogenous.
The Fredholm integral equation is derived from the general equation (1) when b (x ) =b, (where
b is a constant). When /4 (x )=0, and A (x )=1, Fredholm equations of the first and second kind

are obtained as follows,

f (x)=[K (x.y)u(y)dy )
and

W)= (0 )+ [K (50 Ju (3 e 5)

Both the Volterra integral equation and the Fredholm integral equation are very similar in the way
that they are presented. The only difference that distinguishes these integral equations is the fact
that the limits of integration are different, as mentioned above.
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2- Integral Transforms

If h (x )=0, we can take 4 = —1 without loss of generality and obtain the integral equation:

g(x)=[K(r,y) ()dy. @)

This is called a Fredholm equation of the first kind or an integral transform. Particularly
important examples of integral transforms include the Fourier transform and the Laplace transform.

3- Two useful Identities

To change from differential equation to integral equation, or vise versa, we need the following
identities:

H(x) H(x)

d OF (x,t) dH (x) dG (x)
& — | F(x,t)dt = | ———=dt +F|x,H -F|x,G I
7 Gzl;) (x,2) GE[) + [x (x)] e [x (x)] R (D
H H
Comment: If H and G are constants, we can have diJ‘F (x,t)dt = IMdt
X G G
X . X X —¢ n—1
& jy (t)dt" = jﬁy (¢ )dt (I1)
Example: use identity (I) to calculate:
d | d
-—|sin(x —¢)y (t)dt, b- — | cos(x —¢)y (¢)dt
adxl (x =)y () dx! (x =)y ()

Answer:

a—i]-sin(x —t)y (t)dt :Icos(x —t)y (t)dt +sin(x —x)y(X)di—sin(x —0)y (x)d_O
dx OT 0 T dx dx
7 B =0

= }cos(x —t)y (¢)dt

b—i)jcos(x —t)y (t)dt =—)jsin(x —t)y (t)dt +cos(x —x)y (X)di—cos(x —0)y (x )@
dx O%r—/ 0 -7 dx dx

F(x,0) =1 =

= —)jsin(x =)y @t)dt +y(x)

Example: use the identity (II) to express j y(@t)dt”.
0

Answer:
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[y @ =[x ~tyy @

1
Example: Show that the function ¥ (*) = m is a solution of the Volterra integral equation

X

I '
y(x)_(1+x2)_J(1+x2)y(t)dt

0

1
Answer: In the second term, if we put Y &)= m , then we can find

1 Tt 1 1 7 t 1
y(x)_(1+x2)_£(1+x2)y(t)dt _(1+x2)_(1+x2)'([(1+t2)3/2dt T Uexy”?

1 1 = t
- i+ f Simplif:
I;I-'I:.J!:I— {1+ xE) 1+ %23 J; (1. tz:ls,rz I

S LR
Tl

Example: Show that the function y (x)=xe" is a solution of the Volterra integral equation
y(x)=sin(x)+ 2]cos(x —1)y (t)dt
0
Answer: In the second term, if we put y (t) =te' , then we can find
y(x)=sin(x)+ 2]cos(x —t)te'dt =xe*
0

With MATHEMATICA

P =San[n] 2 |-:|:-:~s[:|:—t] tafmt o/ Sdmplify @:{ 3

Example: Show that the function y (x)=cos(2x) is a solution of the Volterra integral equation
y(x)= cos(x)+3j1<(x ) (2)dt
0

K1) sinx cost, 0<x <t
X,l)=1 .
where sinfcosx, 0<x <rx

ANSWEr: y(x)=cos(2x) = y(t)=cos(2)

y(x)=cos(x)+3 {sin(x )] sin(z ) cos(2t )dt + cos(x )]{ sin(t ) cos(2¢ )dt | =cos(2x )

With MATHEMATICA
¥ =Co= [x] + 3 |Cus [x] fSin[t] Cos[2t] At + Sin[x] rCus [t] Cos[2t] At]| fF Simplify
a x !

cos(2x)
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2
H.W. Show that the function ¥ (x )= (x +1) is a solution of the Volterra integral equation

y(x)=e™ +2x +J‘et_xy(t)dt
0
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4- Conversion of ordinary differential equations into integral equations
Example: Convert

y"(x)+y(x)=0
with initial conditions ¥ (0)=1, » '(0)=0 into integral equation.

Answer:
1- Use the original equation y "(x )+ y (x ) = 0, rearrange and integrate it in the form

y"(z)==y(z) togive

[yrexe =-[y@uz =[] =-[rexd =y -p©=-[rex

=y () =]y ()
0
2- Integrate both sides of the last equation,

[yexe =-y@ex @] =-[rex =y -pO)=-]6-2)Ex

Then the required integral equation is yr)=1- .([ (x —z)y(z )z .
Example: Show that the function y (x)=cos(x) is a solution of the Volterra integral equation
y () =1=[(x =)y ()t
0
ANnswer: Given y(x)=cos(x) =y (t)=cos(t), and
y(x)=1 —)j(x —t)cos(t)dt =1—x sin(x ) +[—1+cos(x ) +x sin(x )] = cos(x )
With MATHEMA(ZI'ICA (as an integral equation)

m12k= 1 —J’“(x -z) Co=[z] d=
0

Cut[12]= Cos[x]

With MATHEMATICA (as a differential equation)

DE = @, 2:¥[x] + k¥[x] =
ky[=x] +v7[=] =
2011=DSolve[{DE,¥[0]== 1, ¥'[01== 0}y, x] /. k1

{{y—)FunctiDn [{:-c}, Cos [ﬁx]]}}

Table[ {x, ¥[x]1., 1¥'[x1} F. =o0ll[[1]1], {x. 0,2 x, 0.5} 1 FFf TableForm



Prof. Dr. I. Nasser Phys571 (T-131) November 28, 2013
Integ Equ Phys571 T131

0 1 0

0.5 0.877583 ~0.479426

1. 0540207 _0.p41471 Plot [y[x]/ .s011[[1]1].{x,0,2 x}]
1.5 0.0707372 - 0.997495 1

2. _0.416147 0.909297

2.5 _0.801144 - 0.598472 0.5}

3. _0.989992 0.14112

3.5 _0.936457 0.350783

g _0.653644 0.756802 SRS
4.5 _0.210796 0.97753 0.5}

5. 0.283662 0.958924

5.5 0.70867 0.70554 _1l

6. 0.96017 0.279415

5

We will use the expression:

%(x):f(x)+)j.K(t,x)(pn_l(t)dt, n=12,3,"-

and define @ (x ) =1 (x).

Successive approximation (Neumann solution)

Example: Use the successive approximation method to find the solution of the integral equation:
y () =1=[(x =)y eyt
0

Answer:
Define the 1% approximation: ¢, (x)=1as the first term in the above equation = ¢ () =1

Then ¢, (x ) will be given by:

o) =1-[(x =) p()dt =1 [(x 1) g, (¢ )dlt

X x2
_1—£(x -0[1d =1-=

2

t
With ¢,(t) = 1—? , then ¢, (x) will be given by:

2 4

0. =1= i =00 1= —z{l—%}h BEESE

2 4

. tT ot . .
With ¢,() =1 —3+£ ,then @5(X) will be given by:
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o, (x)=1=[(x =) g, ()t

x tz t4 xz x4 x6
=1-Jx -0 1-Z+ |t =1-—+ -
) 2 24 2 24 720

4 6
Which is the same as: cos(x)zl—x—+x——x—+---, |x|<1
2 24 720

Example: Use the successive approximation method to find the solution of the integral equation:
y () =1=[@—x)y @yt
0

In[1]:= 1- f{z -x) Cogh[z] dz=z

Out[1]= Coshix]

Answer:
Define the 1% approximation: ¢, (x ) =1as the first term in the above equation = ¢, (¢)=1

Then ¢,(x) will be given by:

o) =1= [t =xp(t)dt =1 [t =x ), (0 )t

2
X

=1—£(t—x)[1]dt=1+ .

2

t
With ¢ (f) =1+ PR then ¢,(x) will be given by:

x x £2 I
x)=1-|t—-x)p@)dt =1— |t —x)|1+—|dt =1+ —+—
0, (x) !( () £< ){ 2} o
t* !
With @,(t) =1 +?+£ ,then @3(X) will be given by:

P, (x)=1-[(t =x ), (0 )at

X 2 4 2 4 6
=1—I(t—x) 1+t—+t— dt =1+ + 24+ 2
0 2 24 2 24 720
2 4 6

Which is the same as: cosh(x ) =1 +x_+_+_+
2 24 720
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Example: Use Neumann series method to solve the integral equation:
1
y(x)=x mjx z y(z)dz
0

Answer: Startby y (x)=x = y,(z)=z, we will have:

1 1
y(x)=x +2,J.x zy, (z)dz =x +/1Ix z%dz =x +x (%)
0 0
Repeating the procedure once more, with y (z)=z +z (E) , we obtain:

H
nx)y=x+ i[/ xzy{z)dz
Q

! iz A2
=x+)./0 xz(z+—j-) dz = x+(§+-9—)x.

For this simple example, it is easy to see that by continuing this process the solution

15 obtained as
& + .% : + é ? _i. .
3743 3 s

Ciearly the expression in brackets is an infinite geometric series with first term A/3 and

Wx)=x+

common ratio A/3. Thus, provided |Al < 3, this infinite series conveiges to the value
A/{3 — 1), and the solutionis

Ax 3x

3—4 3-1

Px)=x+

. . a . :
[The geometric series: a +ar +ar’ +---=——, where a is the first term and 7 is the common
—-r

ration. |
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Example: Derive a Fredholm integral equation corresponding to:
y"(x)=-Ay(x)=0, a<x <b

with initial conditions ¥ (@)=0, y(b)=0.
Answer: Given that
y'"(x)-Ayx)=0 = y"(x)=4y(x)
with initial conditions: ¥ (@)=0, y (b)=0
1- Integrate the equation y "(x) =4y (x), gives

].y"(z)dz:i]y(z)dz :>[y '(Z)]‘::/lf[y(z)dz :>y'(x)—01:/1]-y(z)dz

=y () =4[y (z)dz +c,
0
2- Integrate both sides of the last equation,

]y (z)dz :l]y (z)dz” +c, :[y(z)]‘: :ﬂ,)jy(z)dzz+c:|-dz

=>yx)-y()= ﬂj(x -z)y(z )Yz +cx +c,
Use the initial conditions y (a) =0

y@-y@=2[(a-2)y @)z +cate, =0+cate,=0 = ¢, =—ca

=y (1) =Af(x ~2)y (X e (x —a)
Use the initial condition y (b)=0. “
YB)=A[b -2y G Yz +eb-a)=0 = ¢j=——[(b2)y (=X
a a_b a
then:
Y@)=A[@ =2)y )z + A= (b —2)y (2 iz
a a_b a

To change the integral equation to Fredholm type, we have to split the limits of the second integral
from [a,b ] to [a,x ]and [x ,b] , to have the final expression:

y(x)= z]Kl(x,t)y (t )dt +/1j1<2(x,t)y (t)dt = ZIK(x,t)y (t)dt,

With*

10
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_o=bhe-a)
K(x,t)= ECEORNN ;
’ _=b)x-a)
’ b-a)
:(x -b)(z —a)

[*To calculate the Kernel we use: (x —z)+ 8% -2) ]
a-b b-a

H.W. Do example 16.1.2 in Arfken’s book page 1009

Example: Convert
y"(x)=3y'(x)+2y (x)=4sin(x)
with initial conditions ¥ (0) =1, y'(0)=-2 into a Volterra integral equation of the second kind.

Conversely, derive the original differential equation with initial conditions from the integral
equation obtained.

Answer: Given

y"(x)=3y'(x)+2y(x)=4sin(x) = py"(x)=4sin(x)+3y'(x)-2y(x)
with initial conditions: ¥ (0)=1,y'(0) =2 _ Integrate the equation
y"(z)=4sin(z)+3y'(z)-2y(z), gives

)j.y "(z)dz =4Tsin(z )dz +3]y (z)dz —2]y (z)dz
= [y )]} =4[-cos)]; +3[y )] ~2[ v (2 =
:>y'(x)—w=4[—cos(x)—1]+3[y(x)—&]—zjy(zﬁz

_ 1 0

=y '(x)=—1—4cos(x)—3y(x)—2jy(z)dz
0
2- Integrate both sides of the last equation,

1 Y (x )z = —:[dz - 41 cos(z )dz + 31 y(z)dz — 21 (z)dz?
=[y(@)], == —4[sin()]; +31y (z )dz —2:[)/ (z Mz *
=y ()= (0)=—x —4sin(x)+31y(z)dz —21(;; )y (z )z
Then () =1 ~4sin(e) 13205 =218 2 X i e requivd Volrsa oqaton of e

second kind.

11
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Example: Solve the integral equation: y (x)=e ™ +2x + J.eHc vy (t)dt by taking the derivative
0
with the boundary conditions y (0) =1.

ANSwWer: Given y(x)=e ™ +2x +jef-xy(z)dz , we have
0
—X t—x X =X dx
y'(x)=——"+2—|e Ty @)t +te y(x)d—
x

=— " +2—|eTy@)dt +y(x)=2x +2

0
|
y'(x)=(2x +2) = y(x)=x"+2x +constant
The initial condition is y (0) =1= y (0) = 0+0+constant = 1 = constant=1,

thus the solutionis y (x ) = (x + 1)2 .

H.W. Solve the integral equation: ¥ (X)=1-x —4sin(x)+ IB —2(x =2)]y(z )Mz by taking the
0
derivative. Check the boundary conditions ¥ (0) =1, y'(0)=-2

ANSWEr: check the first derivative: ¥ '(x)=—1—4cos(x)+3y (x)- 2Jy (z Mz
0

And the second: y "(x)—4sin(x)—3y '(x)+2y (x)=0.
Example (Arfken 16.3.1): Find the solution of the integral equation
1!
P(x)=x +Ej(z —x (2 )dt
|

Answer:
Define the 1% approximation: ¢, (x)=x as the first term in the above equation = ¢, (¢) =¢

Then ¢, (x ) will be given by:
1 1
o (x)=x +5_jl(t —x)p(t)dt =x +5_j1(: — X ), ()t
1 1
=X +5'[(t —x)[t]dt =X +§
With ¢,(t) =1+, then ¢, (x) will be given by:
1 x

0.(x) =x +%_jl<r 3 )y ()t =¥ +%:fl(t —x)[t +ﬂdt S

1
With ¢, (6) =¢ +5 ==, then #5(X) will be given by:

12



Prof. Dr. I. Nasser Phys571 (T-131) November 28, 2013

Integ Equ Phys571 T131

oyx) =x +%jl<z — X ), (0

1
=X +l.|.(t —x)[t +l—t—}dt =X +l—x——i
2° 3 3

And 95, (*) will be given by:

0, (x)=x 43 (-)'737 —x ) (-''37 T%x J&

s=1 s=1

1/4 1/4

13
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6- Degenerate Kernels (Separable kernels)

The most straightforward integral equations to solve are Fredholm equations with separable (or
degenerate) kernels. A kernel is separable if it has the form

K(x,z) =) ¢i(x)wil2), (23.8)
=1

where ?)and ¥i(2) are respectively functions of x only and of z only and the, number of terms in
the sum, #, is finite.
Let us consider the solution of the (inhomogeneous) Fredholm equation of the second kind,

b
y(x) = f(x) +1 f K (x,2)y(z) dz, (239)

which has a separable kernel of the form (23.8). Writing the kernel in its separated form, the
functions %) may be taken outside the integral over z to obtain

n b
Y = F)+2D hilx) f pi2)y(z) dz.
i=1 a

Since the integration limits a and b are constant for a Fredholm equation, the integral over z in each
term of the sum is just a constant. Denoting these constants by

b
a= [ wene)ds (23.10)
the solution to (23.9) is found to be

Yx) = fx)+ 1) ciilx), (23.11)
i=1

where the constants ! can be evaluated by substituting (23.11) into (23.10).

1
Example: For the integral equation: y (x)= ﬂje”t y()dt, Find Aandthen y(x), using the
0

degenerate kernel approximation. Is there is any restriction on A ?

Answer:
1 1
y(x)=Afe "y ()t = de" [e'y ()t = de*C,
0 0
Where,
1
C=[e'y . ()
0
= y({)=4'C, (B)
Using (B) in (A), one finds:
1 ! ‘ e ac
c=jefy(z)dz=jefﬂedet=zcje2’dt=ﬂc : =7(e2—1)
0 0 0 0

Then
A
Cll-—("-1|=0.
[ 2 )}

14
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2
(e’ =1

Since C # 0, then |:l—%(€2—1):|:0:>ﬁ:

So, no restriction on A .

o
With the boundary condition y (0)=2=C =e’ —1 and the integral equation
y(x)= ﬁje“’y (t)dt hasthe form y (x)=2e".
Example:o Solve the integral equation
y(x)=x +/1j-(xz +2z2)y(z)dz
0

Answer: The Kernel could be separable as follows:
K(x,z)=(xz +z7)
Then:

1

y()=x+2x [z y()dz + Az (2)dz

The kernel for this equation is K(x,z) = xz + z2, which is cleatly separable, and using the
notation in (23.8) we have ¢(x) = x, ¢2(x) = 1, wi(z) = z and w,(z) = 2% From (23.11)
the solution to (23.12) has the form

y(x)=x +/1(clx +cz) =>y(iz)=z +/1(clz +cz)

where the constants ¢; and c, are given by (23.10) as

t
¢l =/ zlz + Meiz + )l dz = § + jAc1 + jAca,
Jo
1
c2=/ 22[z + Meiz + )] dz = %—F%ACI —l—%,?.c;;.
0

These two simultaneous linear equations may be straightforwardly solved for c¢; and c; to give

24 4+ 4 18

“=Hmowmi-z ™ T nwmiow

so that the solution to (23.12) is
(x) = (72 — 244)x + 184
A Py Ty gy

(23.12)
In the above example, we see that (23.12) has a (finite) unique solution provided that A is not equal
to either root of the quadratic in the denominator of y(x). The roots of this quadratic are in fact the
eigenvalues of the corresponding homogeneous equation, as mentioned in the previous section. In
general, if the separable kernel contains n terms, as in (23.8), there will be n such eigenvalues,
although they may not all be different.

H.W. Solve the two simultaneous linear equations using the Matrix and using the determinant.

15
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Kernels consisting of trigonometric (or hyperbolic) functions of sums or differences of x and

z are also often separable.

Example: Find the eigenvalues and the corresponding eigenvalues of the homogeneous Fredholm
equation:

y(x)=ﬂ,]{sin(x +z)y(z)dz (23.13)

Answer:
The kernel of this integral equation can be written in separated form as
K(x,z) = sin{x + z) = sinxcosz + cos xsin z,
s0, comparing with (23.8), we have ¢(x) = sinx, ¢2(x) = cosx, ;(z) = cosz and

py(z) = sin z.
Thus, from (23.11), the solution to (23.13) has the form

y(x) = A(c; sin x + ¢2 €0s x),

where the constants ¢; and ¢, are given by

. T . A
¢ = A/ cosz(c;sinz +¢yco8z)dz = —;cz, (23.14)
0
T . AT
c;=A4] sinz(c;sinz+ cycosz)dz = ?cl. (23.15)
0

Combining these two equations we find ¢; = (in/2)%c;, and, assuming that ¢; # 0, this
gives A = +2/m, the two eigenvalues of the integral equation (23.13).

By substituting each of the eigenvalues back into (23.14) and (23.15), we find that
the eigenfunctions corresponding to the eigenvalues A; = 2/ and A, = —2/m are given
respectively by

y1(x) = A(sin x + cos x) and ¥2(x) = B(sin x — cos x), (23.16)
where A and B are arbitrary constants. <«

H.W. Calculate the above problem using matrix method.

Example: Find the eigenvalues of the integral equation
1
S ) =x +A[(y” +x2y ) ()dy
Answer: Expand the function as: O
1 1 1
f ) =x +A[ Gy +x2y ) (0)dy =x +Ax [y°f (v)dy + x> [ 3f (v )dy
And define: 0 0 O

y :jyzf(y)dy, B ijf(y)dy,

16
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Then:
1 1
f(x)=x +ﬂxjy2]’(y)dy +/1x2jyf(y)dy =x +AAx + ABx*
0 0

With f (t) =t + AAt + ABt? then

1 1
11,1
A=y’ dy =|y*|y + A4y +ABy* |dy =—+—14 +— B
!yf(y)y !y [+ Ady + ABy? |dy =+ 224+
and
1 1 11 1
B = dy = + A4y +ABy* |dy =—+—14 +—AB
!yf(y)y !y[y y+ABy” |dy =S+~ 2d +

Solve the above two equations for A and B, one gets:
60+ 1 80

= N B =
240-1201-A° 240-1201- 47

1 1 1 1 1 1
Solve[{A== i +gOAA+ £ AB, B== 3*3 A,;E)Ar AB}, {A, B}]
A
{{Ae— ’ , B> - }}
240+ 120 x + 22 -240 + 120 2 + 12

And
(240 - 60/1)x +804x *

x)=x +AAx + ABx* =
S @) 240 —1204 — A2

Notes: Last equation f(x) = infinite at the two roots:
Solve[240-120 x - A% == 0, A]

[{Ax>4(-15-4~15)}, {x>4(-15+4~15)}}

These are the two eigenvalues of the integral equation.

Example: Find the solution of the integral equation
o(x)=x"+ ljxtgo(t )dt
1% method (Neumann): Use the expression: 0
(pn(x)=f(x)+iK(t,x)(pn_l(t)dt, n=123,--
0

and define ¢ (x ) =1 (x).
In Define the 1% approximation: ¢, (x ) =Xx 2

With @ (x)=x7,then @ (¢)=¢>and ¢,(x) will be given by:

17
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1 1
A=+ Afx 1 g0t =+ 2 x 1 £t =x* 4 a2
0 0

Withg, (x ) =x° +§x ,then ¢, (t)=t> +§t and @,(X) will be given by:
1 1
1 X 1
x)=x"+A|xt @)t =x>+x2 t(t2+—tﬂ}7t:x2+/1—(l+—/1j
?,(x) j ?,(0) j y 113

2" method (Degenerate Kernel):

1 1
p(x)=x"+A[xto(t)dt =x* + Ax [tp@)dt = p(x)=x"+ x4
0 0

A

With

_1 _1 , _l l B |
A—.(l).t(p(t)dt—'([t(t +/1tA)dt_4+3/1A - A=—

Then

H.W. Find the solution of the integral equation

o(x)=x +%:fl(t—x)¢(t)dt

18
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| Issued: Assignment # 8 Part A Due date

Using MATHEMATICA will give you more credit
Part A

From Arfken’s book, solve the following problems:

1- 16.1.1, 2 and 4

2- 16.3.1,2,34,7(aand b) and 9(a and b)
3- 16.3.2
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