KING FAHD UNIVERSITY of PETROLIUM and MINERALS

Physics Department Mathematical Physics (Phys-571) Fall 2013

Issued: 5-9-2013 **Project #2** Due date 12-9-2013

Use MATHEMATICA to check your answers in any problem.

Read and practice the solution of Example 9.6.4 (Page 586 in the text), then do the following problem:

1- For the Bessel differential equation of first order is defined as:

$$x^2y'' + xy' + (x^2 - 1)y = 0$$

With the following information,

$$y_1(x) = J_1(x) = \frac{x}{2} - \frac{x^3}{2^4} + \frac{x^5}{2^7 \times 3} + \cdots, \qquad P(x) = \frac{1}{x},$$

Find the second independent solution using the formula: $y_2(x) = W(a)y_1(x)\int_{a}^{x} \frac{e^{-\int_{a}^{y} P(u)du}}{y_1^2(v)} dv$.

2- **Solve Only One** of the following differential equation using two different methods to calculate the second solution.

1-
$$x(x-1)y''+(3x-1)y'+y=0$$

2-
$$xy'' + y' + x^2y = 0$$

3-
$$x(1-x^2)y''+(1-3x^2)y'-xy=0$$

4-
$$x(1-x)y''+(1-5x)y'-4y=0$$

5-
$$xy'' + y' + xy = 0$$

6-
$$x(x-1)y''+xy'-y=0$$

7-
$$x^2y'' + y' + (x^2 - 4)y = 0$$

8-
$$x^2y'' + 5xy' + x^2y = 0$$

9-
$$xy'' + 4xy' + (x^2 + 2)y = 0$$

10-
$$2xy$$
 "+ y '+ $y = 0$

11-
$$x(x-1)y''+(3x-1)y'+2y=0$$