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The Harmonic Oscillator (Arfken  page 822) 
Introduction: 

    
 
1. Classical description. 
 

A particle of mass m is subject to a restoring force Fx, which is proportional to its 
displacement from the origin (Hooke’s Law). 

 

kxF
dx

)x(dV
x −==−  

 
where k is the force constant.  If we take the zero of the potential energy V to be at the 
origin x = 0 and integrate, 

 

     2
2
1

x

0

x

0
kxxdxkdV)x(V =−== ∫∫  

 
Note that this potential energy function differs from that in the particle-in-the-box problem in that the walls 
do not rise steeply to infinity at some particular point in space (x = 0 and x = L), but instead approach infinity 
much more slowly. 
From Newton’s second law, 

           kx
dt

xdmmaF
2

2

−===  

thus, 

       
2

2
2 ,                  d x k kx x

dt m m
ω ω= − = − =  

This second-order differential equation is just like that for the free particle, so solutions must be of the form 
            [ ] [ ]( ) sin cosx t A t B tω ω= +  

where A and B are constants of integration.  If we assume that x = 0 at t = 0, then B = 0 and  
[ ]0( ) sinx t x tω=  
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where 0x A= is the maximum displacement amplitude.  
Since this can also be written as 

            ),tπ2sin(x)tωsin(x)t(x 00 ν==   
we see that the position of the particle oscillates in a sinusoidal manner with frequency  

     2 24 .
2

k mω π
π

ν = ⇒ = ν  

The energy of the classical oscillator is  

    22 kx
2
1vm

2
1VTE +=+=  

 
[ ]

[ ] [ ]

0

2 2 2 2 2 2
0 0 0

v( ) cos

1 1 1cos sin ,
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E m x t k x t kx

ω ω

ω ω ω

= =

∴ = + =
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    and is not quantized. 
 
 
2.  Quantum mechanical description. 
 

Following our prescription, we begin by writing down the classical energy   expression for the oscillator 

     2
2
x22 kx

2
1

m2
pkx

2
1vm

2
1VTE +=+=+=  

and then convert this to the quantum mechanical analog, the Hamiltonian operator Ĥ , by replacing each of 
the dynamical variables (px and x) by their operator equivalents, 

     xx̂x,
x

ip̂p xx =→
∂
∂

−=→  

This yields 

                2
2

22

kx
2
1

xm2
Ĥ +

∂
∂

−=  

We then use this form of Ĥ  in the time-independent Schrödinger equation 
ψEψĤ =  

 
yielding 

 

).x(ψE)x(ψkx
2
1)x(ψ

xm2
2

2

22

=+
∂
∂

−    (A) 

 
Now, we want to solve this equation; i.e., to find the set of functions ψ(x) which, when operated on by the 
operator Ĥ , yield a constant (E) times the function itself.  The wavefunctions should also be: 

i.      finite,  
ii. single-valued, and  
iii. continuous throughout the range from x →  - ∞ to x → ∞. 
 

As in the case of the free particle, Eq. (A) can be solved by expanding ψ in a power series, substituting this 
series into (A), and solving for the coefficients.  In this case, it is a bit involved so we will only outline the 
procedure here.  Details may be found in Griffith’s book. 

not zero. New feature.
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First, we transform Eq. (A) into a more useful form by introducing some new variables.  To be consistent with 
Griffith, we choose 

     
ωm

h
mπ4α,xαy

2

=
ν

==  

Rewriting (A) as  

    0)x(ψkx
2
1E)x(ψ

xm2
2

2

22

=⎟
⎠
⎞

⎜
⎝
⎛ −+

∂
∂

 

we first multiply through by 2m/ α2 , yielding  
 

   .0)x(ψ
α

mkx
α

mE2)x(ψ
x

α
2

2

22

2
1 =⎟

⎠
⎞

⎜
⎝
⎛ −+

∂
∂−  

We then define 

     
α

mE2ε
2

=  

Recognizing that mk/ 2  = 2α , we have 

 ( ) 0)x(ψxαε)x(ψ
x

α 2
2

2
1 =−+
∂
∂−  

 
and, since ,y/x/α 22221 ∂∂=∂∂−  

( ) 0)y(ψyε)y(ψ
y

2
2

2

=−+
∂
∂

    (B) 

We now proceed to solve this equation. 
 

When y becomes very large, i.e. at y →∞  or 0ε → , Eq. (B) reduces to  

 .0)y(ψy
y

)y(ψ 2
2

2

=−
∂

∂
 

In the limit as y →  ± ∞, this equation has the asymptotic solution 
 2/y2ec)y(ψ ±=  ,      

      where c is a constant. The solution with the positive exponential does not behave properly, as ψ(y) 
→ ∞ for y →  ± ∞.  We want ψ(y) → 0 in this limit.  So we choose the solution with the negative 
exponential, 

 2/y2ec)y(ψ −=  for y →  ± ∞.   
But we are primarily interested in solving Eq. (B) for small, or at least finite, y.  To do this, we assume a 
solution of the form 

2/y2e)y(Hc)y(ψ −=       (C) 
where H(y) is a power series 

 
           …+++= 2

210 yayaa)y(H  

To find the values of the coefficients …,a,a 10 , we substitute (C) into (B), which yields (after some algebra, 
worked out in Levine)  

.0)y(H)1ε(
dy

)y(dHy2
dy

)y(Hd
2

2

=−+−    (D) 

This equation is very similar to a famous differential equation known as Hermite’s equation 
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0)y(Hv2
dy

)y(dHy2
dy

)y(Hd
2

2

=+−    (E) 

In fact, (D) and (E) are identical if  
 v2)1ε( =−  

The solutions H(y) to Eq. (E), known as the Hermit polynomials, are of the form 

 
!k)!k2v(

)y2(!v)1()y(H
k2vk

0k
v −

−
=

−

=
∑  

where v is an integer (v = 0, 1, 2, …) and k is an index, running from k = 0 to v/2 if v is even, and from k = 0 
to k = (v-1)/2 if v is odd.  The Hermit polynomials may also be generated using the function 

 ).e(
dy
de)1()y(H 2y

v

v
2yv

v
−−=  

At this point, we have solved the 1D harmonic oscillator problem. 
 

2.a   Eigenvalues  
         
     The energies (eigenvalues) of the one-dimensional harmonic oscillator may be found from the 
relations 

 
ωmα,

α
mE2ε,v2)1ε(
2

===−  

Combining these, we obtain 

 …,2,1,0v,νh
2
1vω

2
1vEv =⎟

⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ +=  

Unlike the corresponding classical result, we find that the quantum mechanical energy is quantized, in units of 
ω , where ω is the classical frequency ω2 = k/m.  v is called the vibrational quantum number.  We also find 

that the lowest state, with v = 0, does not have zero energy but instead has E = ω /2, the so-called zero point 
energy.  We can summarize these results in the form of an energy level diagram 

 
  
 
  
 
 
  
 

 
 
           
 
 
  
 

 
2.b Eigenfunctions. 

 
The wavefunctions of the one-dimensional harmonic oscillator are of the form 

 2/y
v

2e)y(Hc)y(ψ −=  

2/ω7Ev =

ω  

2 2/ω5Ev =

1 2/ω3Ev =

ω  

0v =  2/ωEv =

ω  
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where c (or Nv) is a normalizing constant, v

1
2

1
2 v !2

α

π
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

.  The functions ψv(y) look complicated, but in reality 

they are not, at least for small v.  To see this, let us examine the first few Hermite polynomials… 
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The corresponding wavefunctions are 
1 1

1 12 22 2
2 22 2

v 0 v 11 1
2 2

1
1 2 222 2

v 2 1
2
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( ) (4 2) , .
8

y y
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y e y y e

y y e etc

α α
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π π

α
ψ

π

− −
= =

−
=

⎛ ⎞ ⎛ ⎞
= = ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
= − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

 

 
These are plotted on the next pages, together with their corresponding probability distributions. 
Note that these functions (and their magnitudes squared) are very similar to the corresponding functions for 
the particle-in-the-box problem, being respectively even or odd with respect to reflection about y = 0.  There 
is one important difference, however, and this is that the HO functions do not go to zero at the “walls” of the 
potential.  Thus, there is a finite probability ~ (2v + 1) that the particle will be found in “classically 
forbidden” regions.   This is the origin of the QM tunneling effect. 

 
2. c Expectation values. 

 
Using these functions, we can calculate the expectation value of any dynamical variable we wish, according 
to the recipe 

.
dTψψ

dTψÂψ
Aa

*

*

∫
∫=><=  

Suppose, for example, that we wish to calculate the average position, <x>, in some particular state.  (Clearly, 
it is zero, but can we prove it?).  We have (since the ψ’s are normalized) 

 dye)y(Hŷ)y(H
!v2π

α
α

1y
α

1x 2y
vv

v2
1

2
1

−
∞

∞−∫⎟⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=><=><  

Now, you may substitute in the explicit expressions for Hν(y) if you wish, and integrate, but it is easier in the 
present case to make use of the following useful relation (called the three term recursion relation) 

      )y(H
2
1)y(Hv)y(Hŷ 1v1vv +− +=  

Then, the integral becomes 

 ∫ ∫
∞

∞−

∞

∞−

−
+−

⎭
⎬
⎫

⎩
⎨
⎧ += dye)y(H

2
1)y(Hv)y(H 2y

1v1vv…  

Separating the pieces, we have 

Note that for v even, only even powers 
of y appear whereas for v odd, only odd 
powers of y appear! 
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∫

∫

…

 

But Hv(y) and Hv±1(y) are, respectively, either even and odd or odd and even functions of y.  Since the limits 
on the integral are  ±  ∞, the integrals are zero. 
Therefore, 

0x< > = . 

One can proceed in a similar fashion when calculating 2x< > , 3x< > , …etc.  Also, one can make use of 
another relation 

 1v
v Hv2

dy
)y(Hd

−=  

when calculating expectation values of other dynamical variables that involve, in their operator form, 
derivatives with respect to displacements (e.g., the momentum operator). 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

When we consider both rotations and vibrations simultaneously, we take advantage of the fact that these 
transitions occur on different timescales.  Typically, a molecular vibration takes on the order of 1410  s− .  
A molecular rotation is normally much slower, taking on the order of 910  s−  or 1010  s− .  Hence, as a 
molecule rotates one revolution, it vibrates many, many times. Since the vibrational energies are large 
compared with the rotational energies, the appropriate energy level diagram is: 
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Figure 4 
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Operator theory     (Arfken  page 822) 
    

We have already discussed the solution of the quantum mechanical simple harmonic oscillator 
(s.h.o.) in class by direct substitution of the potential energy 

          21( )
2

V x kx=                 (3.1) 

into the one-dimensional, time-independent Schrödinger equation.  Recall that k  is the spring constant 
of the spring attached to a mass m .  The spring is assumed to obey Hooke’s Law so that the force on the 
mass is 

          ( )F x kx= −                 (3.2) 
The resulting differential equation is solved by a series solution to find the quantized energies and the 
energy eigenfunctions. Recall that the allowed energies are given by  

          ( )E nn = +1 2 ω               (3.3) 
 

where         k mω =   .               (3.4) 
In order to have a physical solution, we had to truncate our series. The series solution is quite 

involved and a bit “messy”.  We are going to solve the problem again using an operator theory 
approach.  There is one interesting difference in the two approaches that we will observe.  Using the 
operator theory approach,  

we will find the energies and will be able to evaluate the averages of quantities like  
position and momentum without knowing the specific forms of the eigenfunctions! 

This is remarkable since we have said before that you must know the wavefunction of the particle in 
order to solve for physical quantities of its motion.  In the differential equation approach that we 
originally used, we had to make some guesses about the nature of the wavefunctions in order to find the 
energies, and to find the averages of position or momentum, we had to know the wavefunctions exactly. 
     Let’s begin by writing the Hamiltonian for the s.h.o. (Using Eq. 3.1): 

          
2

2ˆ 1ˆ ˆ
2 2
pH kx
m

= +                (3.5) 

Note that we have written the potential energy operator in terms of the position operator for x.      
We now will find the energy eigenvalues En for this Hamiltonian that satisfy Schrödinger’s equation: 

           1
2

ˆ ,

    ( ),               0,1, 2,    

n

n

H n E n

E n nω

=

= + =
                             (3.6)           

  
With the orthonormality relation: 

,

1       for    
0       for    m n

m n
m n

m n
δ

=⎧
= = ⎨ ≠⎩

                                                     (3.7) 

 
To do this, let’s define two new operators: 

          
( )

( )

a
m

ip m x

a
m

ip m x

≡ +

≡ − ++

1
2

1
2

ω
ω

ω
ω

           (3.8) 
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Note that the operators are defined in terms of two observable operators (position & momentum) and 
are adjoints (complex conjugates) of one another, i.e. ( )††ˆ ˆa a=  .  They are concocted.  Why make 
them?  The usual answer....wait and see. 

H.W. Prove that ( ) ( )† †ˆ ˆ ˆ ˆ ˆˆ ,
2 2

mx a a p i a a
m

ω
ω

= + = −  

 
With these new operators, one can show that the Hamiltonian can be written as  

          ( )H a a= ++ω 1 2               (3.9) 

                     or     ( )H aa= −+ω 1 2               (3.10) 

If these two equations are solved for a a+  and aa +  then one can also show, using the commutation 
relation ˆ ˆ[ , ]x p i= , that the commutator of the two operators is one, 

          [ ],a a aa a a+ + += − = 1             (3.11) 
   Comment: 

     
( ) ( )( ){ } { }

( ) ( )( ){ } { }

2
2 † † † 2 †2 † †

2
2 † † † 2 †2 † †

2

2 2 2

2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆm

m m m

m m

x a a a a a a a a aa a a

p i a a a a a a a a aa a aω

ω ω ω

ω ω

⎛ ⎞ ⎛ ⎞⎡ ⎤= + = + + = + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎡ ⎤= − = − − − = − + − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠

 

{ } { }

( ) ( ) ( )

2
2 2 2 †2 † † 2 2 †2 † †

† † † † †

1 1
2 2

1
2

2 2

2 2

ˆ 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ
2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ   1

m

m

pH m x a a aa a a m a a aa a a
m m

a a aa a a a a a a

ω

ω

ω ω
ω

ω ω⎛ ⎞ ⎛ ⎞= + = − + − − + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + = + + = +
   

 
Now consider what happens if we operate on an energy eigenfunction n  with a .  We get a new 

vector.  What happens if we then operate on this new vector with the Hamiltonian Ĥ ?  Let’s see: 

          ( ) ( ){ }( )† 1
2

ˆ ˆ ˆ ˆ ˆH a n aa a nω= −               (3.12) 

Note that  (3.10) was used for the Hamiltonian. Distributing the two terms in the Hamiltonian gives: 
           ( ) ( )† 1

2
ˆ ˆ ˆ ˆ ˆ ˆ  H a n aa a n a nω ω= −             (3.13) 

Examination of  (3.9) shows that the operators in curly brackets can be replaced by H −
1
2

ω  so that 

          ( ) 1
2

1ˆ ˆˆ ˆ ˆ
2

H a n a H n a nω ω⎧ ⎫= − −⎨ ⎬
⎩ ⎭

 

               
1 1ˆˆ ˆ ˆ
2 2

aH n a n a nω ω= − −  

          ( )ˆ ˆˆ ˆ ˆH a n aH n a nω= −           (3.14) 
Look at the first term in the above expression.  It has the Hamiltonian operating on an energy 

eigenfunction.  We know the result of this operation: it is the energy eigenvalue En ( )ˆ
nH n E n= .  

Thus, we can write the equation as 
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          ( ) ( )( )ˆ ˆ ˆnH a n E a nω= −           (3.15) 
A similar sequence of steps can be performed to show that  

          ( ) ( )( )ˆ ˆ ˆnH a n E a nω+ += +          (3.16) 
   What can we conclude from these two expressions?  Look at (3.15).  Note that it is an eigenvalue 
equation!  The operator a  creates a new vector when it operates on n  and this vector is an eigenvector 

of the Hamiltonian with an energy eigenvalue of nE ω− . The operator a  has taken the original 
eigenvector n  with eigenvalue En and has created a new eigenvector with a new eigenvalue 

of nE ω− .  Since the new energy eigenvalue is less than the original energy, the operator a  is called 
the annihilation operator. 
       
A similar analysis applies to (3.16).  Here, though, we see that operator a + creates a new eigenvector of 
the Hamiltonian with an energy eigenvalue that is greater than the original energy En.  Thus, we call 
operator a + the creation operator. 
      

Let us examine the annihilation operator and (3.15) a bit closer.  The total energy of the s.h.o. can’t 
be negative.  But if we operate on the state with the lowest energy (the ground state where 0n = ) with 
a , then we might get a negative energy resulting when ω is subtracted from E0.  So we require that 

          ˆ 0 0a =                  (3.17) 
This condition allows us to find the ground state energy.  Let’s operate on the ground state with the 
Hamiltonian to see what we obtain.  We will make use of  (3.9) to express the Hamiltonian. 

( ) 1ˆ ˆ ˆ ˆ ˆ0 1 2 0 0 0
2

H a a a aω ω ω+ += + = +  

Note that invoking the requirement for the ground state expressed in (3.17) makes the first term in the 
above equation become zero.  Thus, we have 

          
1ˆ 0 0
2

H ω=              (3.18) 

so the ground state energy is   

          
0

1
2

E ω=                (3.19) 

   How do we find the other energies?  Let’s start with the ground state and operate on it with the 
creation operator, â+ .  Then let’s operate on that new eigenfunction with the Hamiltonian and see what 
we get.  This is equivalent to taking the expression in (3.16) with n=0. 

          ( ) ( )( ) ( )0

3ˆ ˆ ˆ ˆ0 0 0
2

H a E a aω ω+ + += + =               (3.20) 

We get a new eigenfunction that has an eigenvalue of 3 2ω .  If we operate on this eigenfunction with 
a + and then H  again, we would get another eigenfunction with an eigenvalue of 5 2ω .  Successive 
operations by the creation operator and Hamiltonian lead us to conclude that the possible energy 
eigenvalues of states created in this manner are 

          ( )E nn = +1 2 ω    where n = 0,1,2,...     (3.21) 
But are these the energies of the eigenfunctions n ?  That is, are these the actual energies of the s.h.o.? 
The answer is yes!  How can we show this? 
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   It appears that the creation operator, â+ , operates on n  and gives as a result the eigenstate 1n +  
since the energy eigenvalue increases by one increment of ω 2 .  Let us postulate then that 

          1ˆ 1na n c n+
+= +               (3.22) 

If we can find the constant 1nc +  then our assumption is correct.  This would mean that these new 
eigenfunctions that we obtain by operating on the n  vectors with a + are just other old eigenfunctions!  
Thus, the energy eigenvalues of the “new” eigenfunctions are really just the energy eigenvalues of the 
original eigenfunctions and these are the actual energies of the s.h.o.  To find the constant, let’s evaluate 
the following scalar product: 
        ( )( ) 1 1ˆ ˆ ˆ ˆ ( *)( ) 1 1n nn aa n n a a n c c n n+ +

+ += = + +  

            
2

1ˆ ˆ nn aa n c+
+⇒ =                     (3.23) 

We have assumed that the n  eigenfunctions are normalized. Recall that eigenfunctions with different 
eigenvalues are orthogonal, thus the ψ eigenfunctions form an orthonormal set.  Using the commutation 
relation in  (3.11), we can replace aa +  by a a+ +1 to find 

    2
1 ˆ ˆ ˆ ˆ ˆ ˆ1 1nc n a a n n a a n n n n a a n+ + +
+ = + = + = +                             (3.24) 

   Now what?  Look at the product of the creation and annihilation operator.  It operates on n .  Do we 
know what this operation does?  Yes!  We can use (3.9) to write 

          a a H+ = −
1 1

2ω
               (3.25) 

Let’s see what this operator does when it operates on a ψ eigenfunction: 
1 1 1 1 1 1ˆ ˆˆ ˆ

2 2 2na a n H n H n n E n n
ω ω ω

+ ⎧ ⎫= − = − = −⎨ ⎬
⎩ ⎭

 

            ˆ ˆ 1 2nEa a n n
ω

+ ⎛ ⎞⇒ = −⎜ ⎟
⎝ ⎠

          (3.26) 

Using (3.21) for the energy En gives 

          ( )1 2ˆ ˆ 1 2
n

a a n n
ω

ω
+ ⎛ + ⎞

= −⎜ ⎟
⎝ ⎠

 

          ˆ ˆa a n n n+⇒ =                (3.27) 

Aha!  This operator gives back the eigenfunction times an integer n.  In other words, the n  functions 
are eigenfunctions not only of the Hamiltonian, but also of this creation-annihilation product operator.  
(You should recognize (3.27) as an eigenvalue equation.)  This operator is a handy one to remember so 
let’s give it its own name and symbol.  We define this operator to be the number operator 

          n a a≡ +               (3.28) 
The functions n  are eigenfunctions of the number operator with corresponding eigenvalues that are 
the integers that label the eigenfunctions: 

          n̂ n n n=             (3.29) 
The Hamiltonian can be written using this number operator as 

          ( )H n= +1 2 ω            (3.30) 
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   This is all very interesting but how does this find the constant 1nc + ?  Recall that is the task at hand.  
Look back at (3.24).  We can rewrite this as 
          

2
1 ˆ 1 1 1 1nc n n n n n n n n n n+ = + = + = + = +  

              1 1nc n+⇒ = +                (3.31) 
   We have done it!  We have found the constant and can write 

          ˆ 1 1a n n n+ = + +              (3.32) 
We have shown that the creation operator does give back one of the original energy eigenfunctions.  In 
fact, it gives back the eigenfunction with the next highest energy. The energies expressed in (3.21) are 
the energies of the s.h.o. 
   It will also be useful to us to find out what the annihilation operator does when it operates on a  
ψ  eigenfunction.  In analogy to the creation operator, we are led to postulate that 

          1ˆ 1na n c n−= −               (3.33) 
Can we find the constant 1nc −  to verify this statement?   Knowing what the creation operator does via 
(3.32), we can write that 

          ˆ 1a n n n+ − =               (3.34) 

Solving this for n  gives 

          
1 ˆ 1n a n
n

+= −               (3.35) 

Substituting this into (3.33) gives 

          1

1 ˆ ˆ 1 1naa n c n
n

+
−− = −            (3.36) 

Once again, we use the commutation relation in (3.11) to replace aa +  by a a+ +1 to obtain 
         

 ( ) ( ) ( )1

1 1 1ˆ ˆ ˆ1 1 1 1 1 1 1 1nc n a a n n n n n
n n n

+
− − = + − = + − = − + −  

              1 1 1nc n n n− − = −                        (3.37) 
Thus, we can finally write that 

          ˆ 1a n n n= −               (3.38) 
      

 
Let us briefly summarize what we have found.  First, we have found the quantized energies of the 

s.h.o. which are given by (3.21).  Second, we have found how the creation and annihilation operators 
operate on the energy eigenfunctions. These results are given in (3.32) and (3.38).  This information is 
valuable since it allows us to find the average values of quantities such as position and momentum as 
you will see in the homework problems.  It should be stressed that we are able to find all of these 
physical quantities without knowing the actual functional form of the eigenfunctions themselves!  As 
mentioned before, this is a very attractive benefit for using this creation/annihilation operator approach 
to analyze the simple harmonic oscillator. 
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2 2
2

2

1ˆ
2 2

dH kx
m dx

= − +  

 

( ) ( )†1 1ˆ ˆ ˆ ˆˆ ˆ,
2 2

a m x ip a m x ip
m m

ω ω
ω ω

≡ + ≡ −             

 ( ) ( )† †ˆ ˆ ˆ ˆ ˆˆ ,
2 2

mx a a p i a a
m

ω
ω

= + = −    

( ) ( )ˆ ˆˆ ˆ ˆ ˆ1 2 , 1 2H a a H aaω ω+ += + = −   

                     †ˆ ˆ ˆN a a≡      †ˆ ˆ, 1a a⎡ ⎤ =⎣ ⎦  
†ˆ 1 1a n n n= + +                    ˆ 1a n n n= −  
 

 
Problems 

 
† †

, 1

, 1

ˆ ˆ1 1 | 1 1 1 ;

ˆ ˆ1      | 1 ;

n m

n m

a m m m n a m m n m m

a m m m n a m m n m m

δ

δ

+

−

= + + ⇒ = + + = +

= − ⇒ = − =
 

 
1- Use the definition ˆ ˆ| |A n A n= , check the following: 

0 x̂ 0 â 
0 p̂ 0 †â 

( )1
2m nω + 2x̂1n+†ˆ ˆaa

( )1
2m nω +2p̂n †ˆ ˆa a

 

2- Calculate the expressions 2 2ˆ ˆ ˆp p p∆ = < > − < >  and  2 2ˆ ˆ ˆx x x∆ = < > − < >  then prove that:   

 
1
2

ˆ ˆ ( )x p n∆ ∆ = + . 

3- Prove  that 
†ˆ( ) 0

!

nan
n

=  

 
4- Prove the following:   

( )
[ ]

† †

† †

ˆ ˆ ˆ ˆ ˆ ;
2

ˆ ˆ, ;

ˆ ˆ,

H a a a a

a H a

a H a

ω

ω

ω

= +

=

⎡ ⎤ = −⎣ ⎦

  

4- Check the following:  
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3/ 2

3

2

( 1)( 2)( 3)       for  3

    3( 1) 1             for  1
ˆ| |              3                 for  1

    ( 1)( 2)           for  3
                  0             

m

n n n l n

n n l n
l x n n n l n

n n n l n
ω

+ + + = +

+ + = +
⎛ ⎞= × = −⎜ ⎟
⎝ ⎠

− − = −

       otherwise

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 

  
  

( ) ( )

0 1 0 0 0 0 0 0
0 1 0 00 0 2 0 †

;     ;0 0 2 00 0 0 3
0 0 0 30 0 0 0

1 0 0 0 1 0 0 0
0 2 0 0 0 1 0 0

† † †
;0 0 3 0 0 0 1 0

0 0 0 4 0 0 0 1

ˆ ˆ ˆ  ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ

a a a

aa aa a a

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝

= =

= − =

⎞
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

 

  
To calculate the ground state wavefunction, we have to use 0ˆ 0a ψ = , where 

( )1ˆ ˆ ˆ
2

a m x ip
m

ω
ω

= + and ˆ i
x

p ∂
∂

= − . This gives  

( ) ( )( ) ( ) 0         ( ) 0o o
d di i dx dxm x x m x xω ψ ω ψ− + = ⇒ + =  

With arrangement, one gets: 
( )o

o

md x xdx
ψ

ωψ = − . After integration, we have 
2 2,

2
( )  ,o

mx mx Ne Nωα α ω
πψ − == =  

2axe dx
a
π∞

−∞

− =∫  

 
[3.1]   
(a) Using the definitions of a  and a + in (3.8) and the fact that [ ],p x i= − , show that you can write the 

Hamiltonian as expressed in (3.9), i.e. ( )H a a= ++ω 1 2 . 
(b) In a similar fashion, show that you can also write the Hamiltonian as expressed in (3.10), i.e. 

( )H aa= −+ω 1 2 . 
[3.2]  
(a)  Show that you can write the position and momentum operators as 
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          ( )x
m

a a= + +

2 ω
   ( )p i m a a= − − +ω

2
      

 
(b) Using these results and the knowledge of how the creation and annihilation operators operate on the 
energy eigenfunctions (Equations (3.32) & (3.38)), show that the average position and average 
momentum of the s.h.o. in the nth state (which means any state) are identically zero.   Recall that the 
energy eigenfunctions form an orthonormal set. 
[3.3] 
(a)  Show for a s.h.o. in the nth state (any state) that the average values of the squares of position and 
momentum are 

          x
m

n2 1 2= +
ω

( )    ( )p m n2 1 2= +ω  

Hint: Use the commutator result in (3.11) to replace aa + .  Recall that a a n+ =  and we know what the 
number operator does when it operates on an eigenfunction as expressed in (3.29). 
(b) Combine your results from [3.2] and part (a) to show for a s.h.o. in the nth state that the uncertainty 
product is 
          ( )∆ ∆x p n= +1 2  
(c) What is the uncertainty product in the ground state?  Note that this is the smallest possible 
uncertainty product that exists in nature as stated by the Heisenberg Uncertainty Principle. 
           
 Prove that  

( ) ( )† †ˆ ˆ ˆ ˆ ˆˆ ,
2 2

mx a a p i a a
m

ω
ω

= + = −
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Simple Harmonic Motion 
Hermit Polynomial 

 
The combination of Newton and Hook laws implies: 

2
2

2

x xF ma k x

d x k x x
dt m

ω

= = −

⇒ = − = −
,                 2k mω=  

The solution will be: sin( )x A tω θ= +  

Where A  and θ  are constants, and 
22
T
πω πν= =  

Potential is related to the work by the equation: 2

0

1 ,    
2

x

xV W F dx kx= − = − =∫  

And the K.E. will be: 

( )

2
2 2 2 2

2 2 2

2 2 2

1 1 1v cos ( )
2 2 2
1 1 sin ( )
2
1
2

dxK m m mA t
dt

mA t

m A x

ω ω θ

ω ω θ

ω

⎛ ⎞= = = +⎜ ⎟
⎝ ⎠

⎡ ⎤= − +⎣ ⎦

= −

 

And the total energy 

( )2 2 2 2 2 2 21 1 1
2 2 2

E K V m A x m x m Aω ω ω= + = − + =  

( ) 2 22 2 2

2 2 2 1v( )  
/2 v

dx
dtP x dx dx dx dx

T T T A xT A x πω
= = = = =

−−
 

 
 

( )P x

x
A-A
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