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Solution of inhomogeneous ordinary differential equations using 
Green's functions ( , ')G x x  

 
Historical Introduction: Green's functions are auxiliary functions in the solution of linear 

partial differential equations. Green's function is named for the self-taught English mathematician 
George Green (1793 – 1841), who investigated electricity and magnetism in a thoroughly 
mathematical fashion. In 1828 Green published a privately printed booklet, introducing what is now 
called the Green function. This was ignored until William Thomson (Lord Kelvin) discovered it, 
recognized its great value and had it published nine years after Green's death. Bernhard Riemann 
gave it the name "Green function" 
For example, in electrodynamics, we are concerned with finding solutions to the Poisson equation:  

2 (r)(r)
o

ρ
ε

∇ Φ = −



                                                         (I) 

and the Laplace equation: 
2 (r) 0∇ Φ =

                                                         (II) 
In fact, the Laplace equation is the “homogeneous” version of the Poisson equation.  
The Green’s function allows us to determine the electrostatic potential from volume and surface 
integrals: 

                                       (III) 
This general form can be used in 1, 2, or 3 dimensions. In general, the Green’s function must be 
constructed to satisfy the appropriate boundary conditions. In some cases, it may be difficult or 
inconvenient to find a Green’s function that generates a solution with the correct boundary 
conditions. In these situations, we can still use Eq. (III) to obtain a solution to the Poisson equation 
(I) and then add the appropriate linear combinations of solutions to the Laplace’s equation (II) to 
adjust the boundary values. Here, we are going to discussed one method of constructing Green’s 
functions that works for one-dimensional systems. Next, we discuss another method that is 
generalizable for higher dimensional systems. 
 

1-  Homogeneous Equation 
 
Start with the second order linear homogeneous differential equations (Eigen value equations), 
which can be written as an eigenvalue problem of the form: 

ˆ( ) ( ) ( )n n nL x y x E y x=                                                                  (1) 

where L̂  is an operator involving derivatives w.r.t. x, nE  is an eigenvalue and ny  is an 
eigenfunction (which satisfies some specified boundary conditions). The general case that we are 
interested in is called a “Sturm-Liouville1” problem, for which one can show that the eigenvalues 
are real, and the eigenfunctions are orthonormal, i.e. 

* ( ) ( )
b

m n mn
a

m n y x y x dx δ= =∫                                        (2) 

where a and b are the upper and lower limits of the region where we are solving the problem, and 
we have also “normalized” the solutions. 
1The general Sturm-Liouville problem, see Arfeken, has a “weight function” w(x) multiplying the eigenvalue on the 
RHS of Eq. (1) and the same weight function multiplies the integrand shown in the LHS of the orthogonality and 

http://en.citizendium.org/wiki?title=Differential_equations&action=edit&redlink=1�
http://en.citizendium.org/wiki?title=George_Green&action=edit&redlink=1�
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normalization condition,  Eq. (2). Furthermore the eigenfunctions may be complex, in which case one must take the 
complex conjugate of either yn or ym in in Eq. (2). Here, to keep the notation simple, we will just consider examples 
with w(x) = 1 and real eigenfunctions. 
 
Example, Find the solution of the differential equation: 

2

2

2

2

2

( ) 1 ( ) ( )
4

( ) 1 ( )
4

n

d y x y x y x
dx

d y x y x
dx

λ

λ

−

+ =

 ⇒ = − 
 

                                              (3) 

in the interval 0 x π≤ ≤ , with the boundary conditions (0) ( ) 0y y π= = .  
Answer: This corresponds to 

2

2
ˆ dL

dx
=                                                                    (4) 

This is just the simple harmonic oscillator equation, and so the solutions are ( )cos nx and 

( )sin nx . The boundary condition (0) 0y =  eliminates ( )cos nx and the condition ( ) 0y π =  
gives n a positive integer. (Note: For n  = 0 the solution vanishes and taking n < 0 just gives the 
same solution as that for the corresponding positive value of n because ( ) ( )sin sinnx nx− = − ). 
Hence we only need consider positive integer n.) The normalized eigenfunctions are therefore: 

( )2( ) sin ,                      1,2,3,ny x nx n
π

= =                     (5) 

and the eigenvalues in Eq. (3) are: 
21

4n nλ = −                                                   (6) 

since the equation satisfied by ( )ny x  is 2"( ) ( ) 0y x n y x+ = . 
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Dirac delta function 
 
Definitions 
 
1. Definition as limit

 

.  The Dirac delta function can be thought of as a rectangular pulse that grows 
narrower and narrower while simultaneously growing larger and larger.  

 
 
 
 
rect(x, b) =  
 
 
 

δ(x) = lim(b→0)  rect(x, b) 
 
Note that the integral of the delta function is the area under the curve, and has been held constant at 
1 throughout the limit process. 

1)( =∫
∞

∞−

xδ  

Shifting the origin

 

.  Just as a parabola can be shifted away from the origin by writing y = (x – x0)2 
instead of just y = x2, any function can be shifted by plugging in x – x0 in place of its usual argument 
x.  

 
 
 
 δ(x - x0) =  
 
 
 
 
Shifting the position of the peak doesn’t affect the total area if the integral is taken from –∞ to ∞. 
 

1)( 0 =−∫
∞

∞−

xxδ  

 
Disclaimer: Mathematicians will object that the Dirac delta function defined this way (or any other 
way, for that matter) is not a real function. That is true, but physicists recognize that for all practical 
purposes you really can just think of the delta function as a very large peak.  

x 

y 

width = b 

height = 1/b 
(so total area = 1) 

x 

y 

x0 
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2. Definition as derivative of step function

( )
1, 0
0, 0

if x
x

if x
θ

>
=  ≤

.  The step function, 
also called the “Heaviside step function” is usually defined like 
this:  

 

It’s a function whose only feature is a step up from 0 to 1, at 
the origin: 
What’s the derivative of this function?  Well, the slope is zero for x < 0 and the slope is zero for 
x > 0.  What about right at the origin?  The slope is infinite! So the derivative of this function is a 
function which is zero everywhere except at the origin, where it’s infinite—and the integral of the 
derivative function from –∞ to ∞ must be 1 because ( )xθ is the anti-derivative and has a value of 1 
at x = ∞ and a value of 0 at x = –∞ (think Fundamental Theorem of Calculus).   

Example: Prove that ( ) ,d x
dx

θ δ=  where ( )xθ  is the step function, see the figure. 

   

( )
1, 0
0, 0

if x
x

if x
θ

>
=  ≤

 

Answer: 

( )

( )

0

( ) ( ) ( ) ( )

( ) ( ) ( ) (0 )

(0 ) ( ) ( )

d dff x dx f x x x dx
dx dx

dff dx f f f
dx

df f x x dx x
dx

θ θ θ

θδ δ

∞ ∞
∞

−∞
−∞ −∞

∞

∞

−∞

= −

= ∞ − = ∞ − ∞ −

= = ⇒ =

∫ ∫

∫

∫

 

 
An infinite peak at the origin whose integral is 1?  Sound familiar? Therefore δ(x) can also be 
defined as the derivative of the step function. 

Note that one of the uses of step function is to write r> (the larger of r and 'r ) as: 
( )' ' ( ' )r r r r r r rθ θ> = − + − . 

Similarly, r< (the smaller of r and 'r ) as: 
( )' ' ( ')r r r r r r rθ θ< = − + −  

Then 

 
( ) ( )

( ) ( )

[ ' ' ( ' )]

' ( ') ' ( ' ) '

r r r r r r r
r r

r r r r r r r r r r

θ θ

θ δ δ θ

>

∂ ∂
= − + −

∂ ∂
= − + − − − = −

;  

Where 'r  is treated as a constant. Also  

( ) ( )

( ) ( )

[ ' ' ( ')]

' ( ') ' ( ' ) '

r r r r r r r
r r

r r r r r r r r r r

θ θ

θ δ δ θ

<

∂ ∂
= − + −

∂ ∂
= − − − − − = −

 

x 

( )xθ  

1 
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Where 'r  is treated as a constant 
 
It can be proved that ( ), ' sin cosg r r kr kr< >=  is a solution of the differential equation: 

( ) ( )
2

2
2 2

2 1, ' 'd d k g r r r r
dr r dr r

δ
 

+ + = − − 
 

 

by direct substitution. 
 
3. Definition as Fourier transform

 

. We’ve seen that taking the Fourier transform of a function gives 
you the frequency components of the function. What about taking the Fourier transform of a pure 
sine or cosine wave oscillating at ω0?  There is only one frequency component, so the Fourier 
transform must be a single, very large peak at ω0 (or possibly two peaks, one at ω0 and one at –ω0). 
A delta function! 

4. Definition as density

 

.  What’s the density of a 1 kg point mass located at the origin? Well, it’s a 
function that must be zero everywhere except at the origin—and it must be infinitely large at the 
origin because for a mass that truly occupies only a single point, the mass must have been infinitely 
compressed. How about the integral? The integral of the density must give you the mass, which is 1 
kg.  A function that is zero everywhere except at the origin, and has an integral equal to 1?  Sounds 
like the delta function again! 

More precisely, this would be a three-dimensional analog to the regular delta function δ(x), because 
the density must be integrated over three dimensions in order to give the mass. This is sometimes 
written δ(r)  or as  δ 3(r):  
 
 δ 3(r) = δ(x) δ(y) δ(z) 
Properties 
 
1. Integral

 

. One of the most important properties of the delta function has already been mentioned: 
it integrates to 1. 

2. Sifting property

 

. When a delta function δ(x – x0) multiplies another function f(x), the product 
must be zero everywhere except at the location of the infinite peak, x0. At that location, the product 
is infinite like the delta function, but it might be a larger or smaller infinity (now you see why 
mathematicians don’t like physicists), depending on whether the value of f(x) at that point is larger 
or smaller than 1. In other words, the area of the product function is not necessarily 1 any more, it is 
modified by the value of f(x) at the infinite peak. This is called the “sifting property” of the delta 
function: 

∫
∞

∞−

=− )()()( 00 xfdxxfxxδ  

 
Mathematicians may call the delta function a “functional”, because it is really only well-defined 
inside integrals like this, in terms of what it does to other functions. (A “functional” is something 
that operates on functions, rather than a “function” which is something that operates on variables.) 
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3. Symmetry
a. δ(–x) = δ(x)   (Note that δ(x) behaves as if it were an even function) 

. A few other properties can be readily seen from the definition of the delta function: 

b. δ(x – x0) = δ(–x + x0) 
 
4. Linear systems

 

. If a physical system has linear responses and if its response to delta functions 
(“impulses”) is known, then in theory the output of this system can be determined for almost any 
input, no matter how complex. This rather amazing property of linear systems is a result of the 
following: almost any arbitrary function can be decomposed into (or “sampled by”) a linear 
combination of delta functions, each weighted appropriately, and each of which produces its own 
impulse response. Thus, by application of the superposition principle, the overall response to the 
arbitrary input can be found by adding up all of the individual impulse responses. 

More Properties 

1- *( ) ( )      it is a real functionx xδ δ=   

2- 0( ) 1                  It is normalizedx x dxδ
∞

−∞

− =∫   

3- ∫
+

−

=−≠=−
a

a

axdxaxax 1)(,0)( δδ  

4- ( ) ( ) (0 )f x x dx fδ
∞

−∞

=∫  

5- ( ) ( ) ( ) ( )f x x a f a x aδ δ− = −  

6- 
0 0

0 0

( ) ( ) ( ) ( ) (0 )ddx f x x x dx f x x f
dx

δ δ
+ +

− −

  = =  ∫ ∫  

7- 1( ) ( )ax x
a

δ δ=  

8- 
2

2 2 ( )
d x

x
dx

δ=  

9- ( )( ) ( )1d x x
dx x

δ δ= −  

Closure property:  Consider a complete orthonormal set of function 1 2( ), ( ),x xϕ ϕ   then for 

any complete function ( ) ( )n n
n

f x a xϕ= ∑  

 Where 
*( ') ( ') 'n na f x x dxϕ= ∫  



Prof. Dr. I. Nasser                       Phys 571,           T131                                                    9-Nov-13 
Green function_I_T131.doc 

 7 

( )

*

* *

( ')

( ) ( ') ( ') ' ( )

( ') ( ') ( ) ', ' ( ') ( )

n n
n

n n n n
n n

x x

f x f x x d x x

f x x x d x x x x x

δ

ϕ ϕ

ϕ ϕ δ ϕ ϕ

−

 =  

 
= − = 

 

∑ ∫

∑ ∑∫


 

For  
1( )
2

im
n x e ϕϕ

π
=  

Then 

( ) ( ')1'
2

im

m
x x e ϕ ϕδ

π

∞
−

=−∞

− = ∑  
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2- Inhomogeneous Equations 
=========================8/11/2013=========================== 

Theorem: the solution of the inhomogeneous equation ˆ( ) ( ) ( )L x y x f x=  is given by: 

0( ) ( , ') ( ') 'f x G x x f x d xϕ= + ∫  

where  0ϕ  is the solution of the equation:  

0
ˆ( ) ( ) 0L x xϕ =  

and is the solution of the equation: 
ˆ( ) ( , ') ( ')L x G x x x xδ= −  

The definition of the above equation is not unique. Some books are used ( ')x xδ −  and others are 
used 4 ( ')x xπδ− − . 
Proof: 
Start with the equation: 

0( ) ( , ') ( ') 'f x G x x f x d xϕ= + ∫  
One finds: 

[ ]
[ ]

0( ) ( ) ( ) ( ) ( , ') ( ') '

0 ( , ') ( ') '

( )

L x f x L x L x G x x f x d x

x x f x dx

f x

ϕ

δ

= +

= +

=

∫
∫  

======================================================= 
Green’s functions, the topic of this handout, appear when we consider the inhomogeneous equation 
analogous to Eq. (1) 

ˆ( ) ( ) ( )L x y x f x=                                                                  (7) 

where ˆ( )L x  is a linear, self-adjoint differential operator, ( )y x is the unknown function, and f(x) 
is a known non-homogeneous term. For a discussion of the concept of self-adjoint and non self-
adjoint differential operators please refer, for example, to the text by “Arfeken”. Operationally, we 
can write a solution to equation (1) as 

1ˆ( ) ( )y x L f x−=  
where 1( )L x− is the inverse of the differential operator ˆ( )L x . Since ˆ( )L x  is a differential operator, 
it is reasonable to expect its inverse to be an integral operator. We expect the usual properties of 
inverses to hold, 

1 1ˆ ˆ ˆ ˆ ILL L L− −= =  
where I  is the identity operator. More specifically, we define the inverse operator as 

1 ( ) ( , ') ( ') 'L f x G x x f x d x− = ∫  
where the kernel ( , ')G x x is the Green's Function associated with the differential operator L. Note 
that ( , ')G x x  is a two-point function which depends on x and x'. To complete the idea of the 
inverse operator L, we introduce the Dirac delta function as the identity operator I.  
Recall the properties of the Dirac delta function ( )xδ are: 
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( ) ( ') ( ') ', ( ') ' 1f x x x f x dx x dxδ δ
∞ ∞

−∞ −∞

= − =∫ ∫  

The Green's function ( , ')G x x  then satisfies 
( ) ( , ') ( ')L x G x x x xδ= −                                            (8) 

Important note: The definition in equation (8) is not unique. Some books are used ( ')x xδ −  
and others are used 4 ( ')x xπδ− − . 
The solution to equation (7) can then be written directly in terms of the Green's function as 

( ) ( , ') ( ') 'y x G x x f x d x
∞

−∞

= ∫                                           (9) 

To prove that equation (9) is indeed a solution to equation (7), simply substitute as follows:  

( ) ( ) ( ) ( , ') ( ') ' ( ) ( , ') ( ') '

( ') ( ') ' ( )

L x y x L x G x x f x d x L x G x x f x d x

x x f x d x f xδ

∞ ∞

−∞ −∞

∞

−∞

= =

= − =

∫ ∫

∫
                              (10) 

Note that we have used the linearity of the differential and inverse operators in addition to equations 
(4), (5), and (6) to arrive at the final answer. 
We emphasize that the same Green’s function applies for any ( )f x , and so it only has to be calculated once 
for a given differential operator L and boundary conditions. 
 

Comment:  The green’s function ( , ')G x x  represents the 
response of the system to a unit impulse at '.x x=  

( , ')G x x  is the field at the observer’s point r  caused by a unit 
source at the source point 'r , then the field at r caused by a source 
distribution is the integral of over the whole range of occupied by 
the source. 
3- A simple example 
Example, Find the solution of the differential equation: 

2

2

( ) 1 ( ) sin(2 )
4

d y x y x x
dx

+ =                                               (A) 

in the interval 0 x π≤ ≤ , with the boundary conditions (0) ( ) 0y y π= = .  
0a b π= =__________________  

Solution: 
1st method: The general solution of this equation is: 

2
2

2
2

complementary solution of the equation particular solution of the equation
( ) 1 Im( )( ) 0

4 1
4

2 2
4( ) cos( ) sin( ) sin(2 )

15
ixd y x ey x

dx
D

x xy x A B x

+ =

+

= + −
 

                                              (B) 
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Note: The particular solution is given as: 
2

2 21 1
4 4

Im( ) sin(2 ) 4 sin(2 )
15(2 )

ix

p
e xy x

D i
= = = −

+ +
 

Using the above boundary conditions, one finds 0A B= = , and 
4( ) sin(2 )

15
y x x= −                                               (C) 

See the plotting of this solution  

 
H.W. check that (C) sactisfies (A). 
 
2nd  method: Closed form expression for the Green's function 
 
In many useful cases, one can obtain a closed form expression for the Green's function by starting with the 
defining equation, Eq. (8). We will illustrate this for the example in the previous section for which Eq. (8) is 

1
4

"( , ') ( , ') ( ')G x x G x x x xδ+ = −                                           (11) 

Remember that 'x  is fixed (and lies between 0 and π) while x  is a variable, and the derivatives are with 
respect to x . We solve this equation separately in the two regions  
i-   0 'x x≤ <  , and  
ii-  'x x π< ≤ .  
In each region separately the equation is G′′ + (1/4)G = 0, for which the solutions are 

2 2( , ') ( ')cos( ) ( ')sin( )x xG x x A x B x= +                                                       (12) 

Where the constants A and B will depend on 'x . Since (0) 0y = , we require (0, ') 0G x =  and so, for the 
solution in the region 0 'x x≤ < , the cosine is eliminated. Similarly G(π, x′) = 0 and so, for the region 

'x x π< ≤ , the sine is eliminated. Hence the solution is: 
( ')sin( / 2)             (0 ')

( , ')
( ')cos( / 2)             ( ' )

I

II

G B x x x x
G x x

G A x x x x π
≡ ≤ <

=  ≡ < ≤
                                                  (13) 

                             
0

                          '

I IIG G
a b

x
π= =_________ | _________  
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Now: How do we determine the two coefficients A and B? The answer will be as follows: 
I- We can get one relation between them by requiring that the solution is continuous at 'x x= , i.e. the 
limit as 'x x→ from below is equal to the limit as 'x x→ from above. This gives: 

( ') sin( '/ 2) ( ') cos( '/ 2)B x x A x x=                                             (14) 
II- The second relation between A and B is obtained by integrating Eq. (11) from 'x x ε→ −  to 'x ε+ , and 
taking the limit 0ε → , which gives: 

            (15) 
so 

0
' '

lim 0 1
x x

dG dG
dx dxε

ε ε
→

+ −

 
− + =  

 
                                         (16) 

Where  
'

'

( ') cos( )             (0 ')( , ') 2 2
( ') sin( )             ( ' )
2 2

I

II

B x xG x xdG x x
A x xdx G x x π

 ≡ ≤ <= 
 ≡ − < ≤


                                            (17) 

Hence ( , ')dG x x
dx

 has a discontinuity of 1 at 'x x= , i.e. 

' ' ' '1 sin( ) cos( ) 1
2 2 2 2II I
A x B xG G− = ⇒ − − =                                           (18) 

Solving Eqs. (14) and (18) gives 
( ') 2cos( '/ 2)
( ') 2sin( '/ 2)

B x x
A x x

= −
= −

                                               (19) 

Substituting into Eq. (3) gives 
'2cos( )sin( )             (0 ')

2 2( , ')
'2sin( )cos( )             ( ' )

2 2

x x x x
G x x

x x x x π

− ≤ <= 
− < ≤


                                                  (20) 

A sketch of the solution is shown in the figure below. The discontinuity in slope at 'x x=  (I took 
' 3 / 4x ϕ π= = ) is clearly seen. 
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It is instructive to rewrite Eq. (20) in terms of x < , the smaller of x  and 'x , and x > , the larger of x and 

'x . One has 
( , ') 2cos( / 2)sin( / 2)G x x x x> <= −                                                   (21) 

Irrespective of which is larger, which shows that G is symmetric under interchange of x  and 'x . 
We now apply the closed form expression for G in Eq. (20) to solve our simple example, Eq. (A), 
with the function: 

0

( ) 2cos( / 2) sin( / 2) ( ) 2sin( / 2) cos( / 2) ( )
x

x

y x x f d x f d
π

= − −∫ ∫       

with ( ) sin(2 )f =  , and using formulae for sines and cosines of sums of angles and integrating gives: 

 
where we again used formulae for sums and differences of angles. This result is in agreement with Eq. (C). 
 

 
4- Summary 
We have shown how to solve linear, inhomogeneous, ordinary differential equations by using Green’s 
functions. These can be represented in terms of eigenfunctions, see next section, and in many cases can 
alternatively be evaluated in closed form, see Sec. 6. The advantage of the Green’s function approach is that 
the Green’s function only needs to be computed once for a given differential operator L  and boundary 
conditions, and this result can then be used to solve for any function ( )f x on the RHS of Eq. (9) by using Eq. 
(20). The advantages of Green’s functions may not be readily apparent from the simple examples presented 
here. However, they are used in many advanced applications in physics. 
 
We can summarize the properties of the one-dimensional Green’s function as follows: 
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1- ( , )G x ξ  is symmetric under interchange of x  and ξ . 
2- Both ( , )IG x ξ and 2 ( , )G x ξ satisfy the homogeneous equation 

                                    
( , ) ( ),               
( , ) ( ),               

I

II

LG x x a x
LG x x x b

ξ δ ξ ξ
ξ δ ξ ξ

= − ≤ <
= − < ≤

 

3- ( , )IG x ξ  satisfies the boundary condition at x a= . Similarly ( , )IIG x ξ  satisfies the boundary 
condition at x b= . 

4- ( , )G x ξ  is a continuous function of x , i.e. lim ( , ) lim ( , )I IIx x
G x G x

ξ ξ
ξ ξ

→ →
= . 

5- ( , )dG x
dx

ξ  is a discontinuous and the discontinuity is given by. 

                                               1II I

x x

dG dG
dx dxξ ξ= =

− =          

6- Generates a superposition principle for the solution under general forcing functions: 

                                      ( ) ( , ') ( ') 'y x G x x f x d x
∞

−∞

= ∫  
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Green's Functions for self-adjoint operator,  
Sturm-Liouville equation 

Arfken, 10.5, page 663 
H.W. Problems 10.5. 1,2,3,10,11 

For the self-adjoint operator, Sturm-Liouville equation is defined as: 

( ) ( )d dL p x q x
dx dx

 = + 
 

,                                          (1) 

Define the Green’s equation by the equation: 

( ) ( ) ( , ) ( )d dp x q x G x x
dx dx

ξ δ ξ   + = − −  
  

                          (2) 

where ( )p x , ( )q x  and ( , )G x ξ are continuous functions in the interval [a,b]. 
Integrating both sides of equation (2) fromξ ε−  to ξ ε+ , one obtains: 

( , )( ) ( ) ( , ) 1d dG xp x dx q x G x dx
dx dx

ξ ε ξ ε

ξ ε ξ ε

ξ ξ
+ +

− −

  + = − 
 ∫ ∫                                  (3) 

If we now let 0ε → , the integral ( ) ( , )q x G x dx
ξ ε

ξ ε

ξ
+

−
∫ vanishes because ( )q x  and ( , )G x ξ  are 

continuous functions of x. Then equation (3) reduces to: 
( , )( ) 1dG xp x
dx

ξ ε

ξ ε

ξ +

−

  = −  
                                             (4) 

or 
( , ) ( , ) 1

( )
dG x dG x

dx dx pξ ε ξ ε

ξ ξ
ξ+ −

− = −                         (5) 

Where it is implied that 0ε → . 
Since there is a discontinuity in the derivative of the Green’s function at x ξ= , it is convenient to 
consider the two intervals a x ξ≤ <  and x bξ < ≤  separately and write the Green’s function in the 
following form: 

1

2

( ),               
( , )

( ),               
c u x a x

G x
c v x x b

ξ
ξ

ξ
≤ <

=  < ≤
                             (6) 

We can summarize the following properties of the one-dimensional Green’s function. 
1- Both 1( , )G x ξ and 2 ( , )G x ξ satisfy the homogeneous equation 

                                    1

2

( , ),               
( , ),               

LG x a x
LG x x b

ξ ξ
ξ ξ

≤ <
< ≤

 

2- 1( , )G x ξ  satisfies the boundary condition at x a= . Similarly 2 ( , )G x ξ  satisfies the boundary 
condition at x b= . 

3- ( , )G x ξ  is a continuous function of x , i.e. 1 2lim ( , ) lim ( , )
x x

G x G x
ξ ξ

ξ ξ
→ →

= . 

4- ( , )dG x
dx

ξ  is a discontinuous and the discontinuity is given by. 

                                          2 1 1
( )x x

dG dG
dx dx pξ ξ ξ= =

− = −                                               (7) 
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These properties can be used for the explicit construction of the Green’s function. Let ( )u x  be a 
solution of ( ) 0Lu x =  satisfying the boundary condition at x a= . Similarly, Let ( )v x  be a solution 
of ( ) 0Lv x =  satisfying the boundary condition at x b= . Following the definition of the Green’s 
function it follows that: 

1

2

( ),               
( , )

( ),               
c u x a x

G x
c v x x b

ξ
ξ

ξ
≤ <

=  < ≤
                      (8) 

Since ( , )G x ξ  is a continuous function of x ξ= ,  we have  

2 1( ) ( ) 0c v c uξ ξ− =                                                 (9)       
and equation (7) implies 

2 1
1'( ) '( )
( )

c v c u
p

ξ ξ
ξ

− = −                                    (10) 

Equations (9) and (10) can be solved to obtain 1c  and 2c . A non-trivial solution exists only if the 
determinant  

( ) ( )
( ) ( )

0
' '

v u
v u

ξ ξ
ξ ξ

−
≠

−                                                (11) 

The left hand side of (11) is the Wronskain of ( )v ξ  and ( )u ξ , ( ) ' 'W u v u vξ = − . ( )W ξ  will be 
non-zero if ( )v ξ  and ( )u ξ  are linearly independent. If this condition is satisfied, from (9) and (10), 
we get:  

1
( )

( ) ( )
vc

p W
ξ

ξ ξ
= −                                            (12) 

Similarly, 

2
( )

( ) ( )
uc

p W
ξ

ξ ξ
= −                                            (13) 

Using: ( ) ( )A W pξ ξ= , we have 

1
( )vc
A
ξ

= −     ,                                           (14) 

2
( )uc
A
ξ

= −                                                 (15) 

And (8) will be 
( ) ( ) ,               

( , )
( ) ( ) ,               

v u x a x
AG x

u v x x b
A

ξ ξ
ξ

ξ ξ

− ≤ <= 
− < ≤


                                                (16) 

------------------------------------------------------------------------------------------- 
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H.W. :  From equation (1), ( ) ( ) 0d dLy p x q x y
dx dx

  = + =    
, check the following: 

( ) ( ) 0

'( ) ( )( ) " ' '( ) ( ) 0 " ' 0 ,
( ) ( )

d dLu p x q x u
dx dx

p x q xp x u u p x q x u u u u
p x p x

  = + =    

⇒ + + = ⇒ + + =
 

( ) ( ) 0

'( ) ( )( ) " ' '( ) ( ) 0 " ' 0
( ) ( )

d dLv p x q x v
dx dx

p x q xp x v v p x q x v v v v
p x p x

  = + =    

⇒ + + = ⇒ + + =
 

 

1- 
( ) '( )( ) ' ' '' ''

( )
dW x p xW x uv u v uv u v W

dx p x
= − ⇒ = − = −  

2- 2 2
2

' '( ) ' ' ( ) uv u v d vW x u v u v W x u u
u dx u
−   = − ⇒ = =   

   
 

----------------------------------------------------------------------------------------------------- 
H.W. 
 

1- For the D.E. 
                                                           ''( ) ( ) ( )y x y x f x− =  
such that (0) ( ) 0y y= = ,  calculate ( , ')G x x . 

 
2- Construct the Green function for the differential  equation : 

( ) 3 ( ) ( )y x y x F x′′ ′+ = , 

             Subject to the boundary conditions: (0) (1) 0y y= = . 
 
       3- For the boundary value problem  

2"( ) ( ) ( )y x y x f xω+ = , 
             where ( )f x  is a known function and y satisfies the boundary conditions (0) ( ) 0y y= = ,  
              calculate the Green’s function. 
 
       4-   For the D.E. 
                                    ''( ) ( )y x y x x− =  
              such that (0) ( ) 0y y= = . Calculate ( , ')G x x . 
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Green’s function step by step with example 

Example: For the non-homogeneous differential equation.  

                                                          


2

2

( )

( ) ax

L x

d y x e
dx

−= −                                                    (A) 

such that (0) '(1) 0y y= = . 
a- Calculate ( , ')G x x .     b- Solve for ( )y x  using part b.     c- Check your answer by solving 
(A) directly. 

 
Answer: 

To find the solution, using the Green’s function, of the non-homogeneous differential 
equation: 

( ) ( ) ( )L x y x f x= ,                                                        (1) 
            with the given boundary conditions, we have to do the following: 
 

1- It is the most important step to have the general solution of the homogeneous equation: 
( ) ( ) 0L x y x = . For example: the solution of  homogeneous equation of (1) 
2

2 ( ) 0d y x
dx

= ⇒  

                                                                ( )y x cx d= +                                                      (2) 
 
2- Use the general solution in (2) as a general solution of ( ) ( , ) 0L x G x ξ = , with the constants 

defined in the two regions.  For example: 

                            
1 1

2 2

( , ) ,               
( , )

( , ) ,               
I

II

G x c x d a x
G x

G x c x d x b
ξ ξ

ξ
ξ ξ

= + ≤ <
=  = + < ≤

                         (3) 

 
3- Define the non-homogeneous equation ( ) ( , ) ( )L x G x xξ δ ξ= −  
4- Use the  

i- boundary conditions given in the equation, (0) 0   and '(1) 0y y= = , to have 
1 20, and   0d c= =  , then  

                 
1

2

                     (0 )
( , )

                       ( 1)
c x x

G x
d x

ξ
ξ

ξ
≤ <

=  < ≤
                                           (4) 

ii- Use the continuity of the Green’s functions ( , ) ( , )I IIG x G xξ ξ=  to have 1 2c dξ =  , 
and  

iii- Use the discontinuity  2 1 1
x x

dG dG
dx dxξ ξ= =

− =  to have 1 0 1c − =  1 1c⇒ = . From step 

(ii) one has 2d ξ=  
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iv- Finally, we have the target Green’s function in the for:  

                     ( , )                  (0 )
( , )

( , )                 ( 1)
I

II

G x x x
G x

G x x
ξ ξ

ξ
ξ ξ ξ

= ≤ <
=  = < ≤

                                  (5) 

Finally, calculate the integral 

( ) ( , ) ( ) ( , ) ( ) ( , ) ( )
b x b

I II
a a x

y x G t x f t dt G t x f t dt G t x f t dt= = +∫ ∫ ∫  

to have, using ( ) axf x e −= − , then 
1 1

2 2
0 0

1( ) ( , ) ( )
x ax a

at at

x

e ey x G t x f t dt te dt x e dt x
a a a

− −
− −= = + = − − +∫ ∫ ∫  

 
c- With simple integration, one finds: 

2''( ) '( ) ( )
ax ax

ax e ey x e y x b y x bx c
a a

− −
−= − ⇒ = + ⇒ = − + + , 

Use the boundary conditions (0) '(1) 0y y= = , one finds 2

1 ,
aec b

a a

−

= = − ,  Then  

2 2

1( )
ax ae ey x x

a a a

− −

= − − +  
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Arfeken method 
Example: For the D.E.  

                                                          ''( ) 0axy x e −+ =  
such that (0) '(1) 0y y= = . 

a- Solve for ( )y x .      b- Calculate ( , ')G x x .     c- Solve for ( )y x  using part b. 
 

a-           2''( ) '( ) ( )
ax ax

ax e ey x e y x b y x bx c
a a

− −
−= − ⇒ = + ⇒ = − + + , 

Use the boundary conditions (0) '(1) 0y y= = , one finds 2

1 ,
aec b

a a

−

= = − ,  Then  

2 2

1( )
ax ae ey x x

a a a

− −

= − − +  

 
b- For the equation ''( ) 0 ( )y x y x cx d= ⇒ = +  then ''( ) 0 ( )G x G x cx d= ⇒ = +  

1 1

2 2

                     (0 ')
( , ')

                      ( ' 1)
c x d x x

G x x
c x d x x

+ ≤ <
=  + < ≤

 

With the B.C. 1 2(0 )0 0, '(1) 0 0y d y c= ⇒ = = ⇒ = ,  then,  
1 1

2 2

( )   ( )                    (0 ')
( , ')

( )   ( ) 1                      ( ' 1)
c x c u x u x x x x

G x x
d d v x v x x x

= ⇒ = ≤ <
=  = ⇒ = < ≤

, 

The Wronskain at any convenient point gives: 
( ) ' ' 0 1(1) 1W x uv vu x= − = × − = −  

( ) 1 ( ') ( ') 1p x A W x p x= ⇒ = = − ,  1
( ') 1v xc
A

= = − , 2
( ') 'u xd x
A

= = −  and the Green’s 

function in the form: 
                 (0 ')

( , ')
'                 ( ' 1)

x x x
G x x

x x x
− ≤ <

= − < ≤
 

Using ( ) axf x e −= − , then 
1 1

2 2
0 0

1( ) ( , ') ( ') '
x ax a

at at

x

e ey x G x x f x dx te dt x e dt x
a a a

− −
− −= − = + = − − +∫ ∫ ∫  
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Green’s function for Bessel’ function   
(Afken 10.5.8, 10.5.3) 

For reading 
 
Find the Green’ function for the equation: 

2
2 2 2 2

2 ( ) ( )d y dyx x k x n y f x
dx dx

+ + − =  

with the boundary conditions (0) finite, ( ) 0y y a= = . 
Butting the above equation in Sturm-Liouville in the form: 

2
2 ( )( )d dy n f xx k x y

dx dx x x
  + − = 
 

 

where ( )P x x= .The Green’ function ( , )nG x ξ  in the form: 
2

2( ) ( )n
n

dGd nx k x G x
dx dx x

δ ξ  + − = − − 
 

 

With the general solution 1 2( ) ( )n nc J kx c N kx+ . Hence:  

1 2

1 2

( ) ( )                     (0 )
( , ')

( ) ( )                      ( )
n n

n n

d J kx d N kx x
G x x

c J kx c N kx x a
ξ

ξ
+ ≤ <

=  + < ≤
 

With the boundary conditions (0) finitey =  2 0d⇒ =  and ( ) ( )nu x J kx= . With  ( ) 0y a = , we 

have 1 2 2 1
( )( ) ( ) 0
( )

n
n n

n

J kac J ka c N ka c c
N ka

+ = ⇒ = −  and 

( ) ( ) ( ) ( )( )
( )

n n n n

n

J kx N ka J ka N kxv x
N ka

−
= . 

With knowing the ( )u x and ( )v x , we have to evaluate the Wronskian ( ) ' 'W u v u vξ = − .  To 
do so, we can choose any convenient point such as 0x → .  

( )
0 0

1 !1 2lim ( ) , lim ( )
! 2

n n

n nx x

nkxJ kx N kx
n kxπ→ →

−   → → −   
   

 

H.W. Prove that   

[ ]( )( ) ( ) 2( ) ' ' ( ), ( )
( ) ( )

n n
n n

n n

J ka J kaW u v u v W J kx N kx
N ka N ka x

ξ
π

 = − = − = −  
 

 

( ) 2( ) ( ) ( )
( )

n

n

J kap A W p
N ka

ξ ξ ξ ξ ξ
πξ

 
= ⇒ = = − −  

 
 

Hence 
( ) ( ) ( ) ( ) ( )                     (0 )

2 ( )
( , ')

( ) ( ) ( ) ( ) ( )                      ( )
2 ( )

n n n n
n

n

n n n n
n

n

J k N ka J ka N k J kx x
N ka

G x x
J kx N ka J ka N kx J k x a

N ka

ξ ξπ ξ

π ξ ξ

− ≤ <=  − < ≤
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Green’s Function in Free Space 

Example: Solve 2 ( , ') ( ')G δ∇ = − −r r r r  using the Fourier’s transformation.  
Answer:   Start with the Fourier transformation in one dimension: 

2 21 1( ) ( ) ( ) ( ) ( )
2 2

ikx ikx
x xG x e G k d k G x ik e G k d k

π π

∞ ∞

−∞ −∞

= ⇒ ∇ =∫ ∫  

In three dimensions: 

( ) ( )
2 2

3 3

1 1( ) ( ) ( ) ( ) ( )
2 2

i iG e G d G ik e G d
π π

∞ ∞
⋅ ⋅

−∞ −∞

= ⇒ ∇ =∫ ∫k r k rr k k r k k  

 
For a continuous function in three dimensions, one finds: 

( )
( )

( )k. ' 3
3

1
2

ie d kδ
π

∞
−

−∞

− = ∫ r rr r'


 

Thus 2 ( , ') ( ')G δ∇ = − −r r r r  will be: 

( ) ( )
( )k. '2 2 3

3 3

1 1( ) ( ') ( ) ( ) 0
2 2

iiG ik e G d e d kδ
π π

∞ ∞
−⋅

−∞ −∞

∇ + − = + =∫ ∫ r rk rr r r k k


 

This implies: 

( )
{ }2 3

3

1 ( ) ( ) 0
2

i ik G e e d k
π

∞
− ⋅ ⋅

−∞

− + =∫ k r' k rk  

Consequently, 

2
2( ) 0 ( )

i
i ek G e G

k

− ⋅
− ⋅⇒ − + = ⇒ =

k r'
k r'k k   

Thus: 

( )
( ) ( )

( )

. .
3 3 2

3 2

1 1( )
2 2

1 *,                                           
2

i
i i

i

eG e G d e d
k

e d
k

π π

π

− ⋅

⋅

− = =

=

∫ ∫

∫

k r'
k r k r

k R

r r' k k k

k R = r - r'
 

H.W. Do the integration with the notations: 
 2 2 sind k dkd k dk d dθ θ φΩ =k =   and coskr θ⋅k R = , one finds: 
Answer: 

( ) 2
0

/ 2

1 sin( ) 1 1=
2 4 4

krG dk
R k R

π

π π π

∞

− = =∫r r'
r - r'



 

[*Help: prove the standard integral 1 2 2

4br ieI d
r b q

πτ
− ±

= =
+∫

q r

]
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H.W. Prove that the Green’s function ( )
ikreG

r

±

=r  is the solution of the scalar wave equation: 

( )2 2 ( ) 4 ( )k G πδ∇ ± = −r r                                              (1) 

Proof: We have two cases: 

Case I:  0r ≠   , we have to prove that ( )2 2 0
ikrek
r

 
∇ + = 

 
 

Start with 
2

2 2
2

1 ( ) ,
ikr ikr

ikre d d e kr e
r r dr dr r r

   
∇ = = −   

   
 ( )2 2 0,

ikrek
r

 
⇒ ∇ + = 

 
 

Case II:  0r =   , we have to prove that ( )2 2 3 3( ) 4 ( ) 4k G d r d rπ δ π∇ + = − = −∫ ∫r r  

In this case let us construct the solution of a scalar wave equation in any volume V of free space 

having an arbitrary small radius ξ  and having an arbitrary source ( )ρ r , then 

a) 

( ) 
2 3 3

using the Green's identitysphere of radius 

2

( ) ( ) ( ) s

ˆ ˆr r 4
ikr

ik ik

G d r G d r G d

d e r d ik e e
dr r

ξ

ξ ξπ ξ

∇ = ∇ ⋅ ∇ = ∇ ⋅

 
 = ⋅ Ω = −   

 

∫ ∫ ∫

∫

r r r


       (A) 

b) 

2 3 2 2

00

1( ) 4

4 1

ikr ikr
ikr

ik ik

e ek G d r k r drd e dr
r ik ik

ik e e

ξ ξ

ξ ξ

π

π ξ

   = Ω = − 
   

 = − + − 

∫ ∫ ∫r
                    (B) 

From the final results of equations A and B, one finds  

( )2 2 3( ) 4k G d r π∇ + = −∫ r  
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Applications of Green’s function 
The Born Approximation 

(9.7.1, 2) 
Exercise: 9.7.18: Integral scattering equation for stationary states 

The time independent Schrodinger equation in the form: 
2 2 2

2 ( ) ( ) ( ),                     0
2 2

kV r E E
 
− ∇ + Ψ = Ψ = > 

 
r r 

µ µ
 

could be changed to the non-homogeneous equation: 
2 2

2

2( ) ( ) ( ),                     ( ) ( )k U r U r V rµ ∇ + Ψ = Ψ =  r r


 

We claim that the solutions may be written in the form: 
3 '( ) ( ) ( , ') ( ') ( ) ,i r G U r d rΨ = + Ψ∫r r r r'ϕ  

where ( )i rϕ  is a solution of the homogeneous equation: 
2 2 ( ) 0,ik r ∇ + = ϕ , 

and G(r) is a solution of   
2 2 3( , ') ' ,k G δ ∇ + =  r r (r - r ) . 

H. W. Proof the claim:   

Exercise: 9.7.16: The solutions of  ( )2 2 ( , ') ( , ')k G∇ + =r r r rδ are 
'|1( , ')

4 ' |

ikeG
± −

± = −
−

|r r

r r
| r rπ

. 

These are two linearly independent solutions of a second order differential equation. One is 
representing the outgoing wave, ikre + , and the other the incoming wave, ikre − . We will be interest 
in outgoing wave. 
The Born approximation 

3 '( ) ( ) ( , ') ( ') ( ') ( , ) ( ") ( '')i i ir G U r d r r G U r r Ψ = + + ∫ ∫r r r r' r" ϕ ϕ ϕ . 

with 3 2 2r sind r drd r dr d dθ θ φΩ == . This procedure can be repeated and yields the Born 
expansion.  The Born approximation is the first term in the Born expansion. 

'|
3 ' 3 '1( ) ( ) ( , ') ( ') ( ') ( ') ( ') ,

4 ' |

ik
i

i i
er G U r r d r e U r d r

± −
⋅Ψ ≈ + = − Ψ

−∫ ∫
|r r

k rr r r r
| r r

ϕ ϕ
π

 

This yields an integral expression for the scattering amplitude ( ),f θ φ !. 
 
Exercise: Simplify the first Born approximation in the case that  'r r>> . 
Answer: In the following figure, one finds: 

                                   
1/ 22

2 2
2 2

2

' '| ' | ' 2 ' 1 2

' ˆ1 ' ',
r

r r rr r r r r r r
r r

r r rr r r r r r
r r→∞

 ⋅
− = + − ⋅ = − + 

 
⋅ − ≈ − ⋅ ≈ − ⋅ 

 
→

  
     

  
 

         (a) 
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)b(                                
1/ 22

2 2 2

1 1 ' ' 1 ' 11 2 1
| ' | r

r r r r r
r r r r r r r r

−

→∞

 ⋅ ⋅ = − + + ≈   −   
→

    

  

 
From the above two equations we have: 

ˆ ˆ| '| ( ') ( ')
'

| ' |
f

ik r r ik r r r ikr ik r r ikr
ie e e e e e

r r r r r

− − ⋅ − ⋅
− ⋅≈ = =

−
k r

   

  

Then 

' 31( ) ( ) ( ') ( ') '
4

f

ikr
i

i i
er r e U r r d r
r

− ⋅ Ψ ≈ + − 
 ∫ k rϕ ϕ

π
 

The term in curly bracket is called the “Scattering amplitude ( , )Bf θ φ ”,  

' 31 1( , ) ( ') ( ') ' | |
4 4

fik r
B i f if e U r r d r U− ⋅= − = − < >∫

 

θ φ ϕ ϕ ϕ
π π

 

Using '( ') iik r
i r e=ϕ , then 

' 31( , ) ( ') ' ,
4

i
B i ff e U r d rθ φ

π
⋅= − = −∫ q r q k k  

momentum transfer≡q . In case of elastic collision: i fk k=  

( ) ( )22 2 2 2 2 2| | 2 cos 2 1 cos 4 sin ( / 2)i f i f i fk k k k k k= − = + − = − =θ θ θq k k 
 

 
 
 
 
 
 

 
 
H.W. For central potential, use the relation ' 'cos 'q r θ⋅ =q r  to derive the relation: 

2
0

2( ) ( ') sin ( ') ' 'Bf V r qr r dr
q

µθ
∞

= − ∫
 

Answer: 



' 3
2

2 1
2 'cos '

2 2
0 0 1 0

2 2sin( ')
'

( ) ( ') '
2

2         ( ') ' ' ' co s ' ( ') sin ( ') ' '
2

i
B

iqr

qr
qr

f e V r d r

V r r dr d e d V r qr r dr
q

⋅

∞ ∞

−

= −

= − = −

∫

∫ ∫ ∫ ∫



 


π
θ

π

µθ
π
µ µϕ θ

π

q r

 

H.W. Do exercise 9.7.19 for Yukawa potential. You may need 1 2 2

4 .
br ieI d

r b q
π− ±

= =
+∫

q r

r  
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1 2 1 2

1 2

1 2 2

1
2 2 2 2

4 2

2 ( ) 2 ( ) 2

5 5
1 2

2 ( ) 2

6 125
12

7 2

4 ;

8 ;
( )

4

5 ,       
8

br i

br i

i
i

b r r b r r

1 2 1 2

b r r

1 2 2 1

i t

eI d
r b q

I bI e d
b b q

eI d e
q

e eI d d d d
r r b

eI d d r -
r b

eI
t
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	Example: Prove that  where   is the step function, see the figure.
	Answer:
	Note that one of the uses of step function is to write r> (the larger of r and  ) as:
	.
	Similarly, r< (the smaller of r and  ) as:
	Then
	;
	Where   is treated as a constant. Also
	Where   is treated as a constant
	It can be proved that   is a solution of the differential equation:
	Closure property:  Consider a complete orthonormal set of function   then for any complete function
	Where
	For
	Then
	For a continuous function in three dimensions, one finds:
	Thus   will be:
	Exercise: 9.7.18: Integral scattering equation for stationary states
	The Born approximation
	Then
	The term in curly bracket is called the “Scattering amplitude ”,
	Using  , then
	. In case of elastic collision:
	H.W. For central potential, use the relation   to derive the relation:
	Answer:


