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Fourier transforms (Chapter 15)
Fourier integrals are generalizations of Fourier series. The series representation

nzx
f(x)= +Z[a cos( i j+b (Tj]

of a function f (X ) is a periodic form on —oo < X < oo obtained by generating the coefficients from

the function’s definition on the least period [—L,L]. If a function f (x ) defined on the set of all

real numbers has no period, then an analogy to Fourier integrals can be envisioned as letting
L — o and replacing the integer valued index, N, by a real valued function k . The coefficients a,

and b, then take the form a(k)and b (k). This mode of thought leads to the following definition.
We will assume the following conditionson f (x)

1- f (x) satisfies the Dirichlet conditions in every finite interval [—L, L].

2- j|f (x)dx | finite, converges, i.e. f (x)is absolutely integrable in[—o0,0].

—00

Fourier's formula for 2L-periodic functions using sines and cosines
For a 2L-periodic function f(x) that is integrable on[—L, L |, the numbers

f(x)_ +Z[a cos( 3 j+b sm(nfx j] (1)

is called the Fourier series of f (x ). Usmg the mtegraIS'

jcos( )cos( )dx =LJ,,, J'sm( )sm( )dx =LJ,,,

. NxX
sin coS dx =0
IL =) = : %)
one finds:
1% 1°¢ CnaX.
a0=f:[f(x)dx, =—jf( )cos(—)dx and bn:f:[f(x)sm(T)dx, n>0

are called the Fourier coeff|C|ents of f.
For continuous range i.e. L — o0, Equation (1) reduces to (note that f (x) -0 as L — Fo0):

f(x)——jf(x "alx +Z—cos(nﬂxjjf( )cos( )dx
+§fsin(”%xj_[f (x ')sin(””x ) o
:in dx ' +— wTf(x)cos{nﬁxl(x—x')}dx'

nz T T . . & L
Let, k =—; Ak ==An==_1If f (x) is finite, then (3 usin =|—dk
T k=TTt () isin <{ o3-ft }>

n=1 0
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f (x):deka (x Jcos{k (x —x )}dx ' o
S 3
:i_[odkjwf (x Ycos{k (x —x )}dx '

Since:
1%, 7 N - , ,
Eidk:[of (x )sin{k (x —x )}dx '=0
then, we can have:
1 0 0 ) . 1 0 ) 1 0 o
f(x)=— |dk [f(x)e*™dx '=—— | dke™ {—= | f (x e ™™ dx"
=gz 16 e g lron e

g(k)

Where g (k) is known as the Fourier transform of f (x).
Applications:

2
Example: Calculate the Fourier transformation of the Gaussian function f (x)=e™ .
Answer:

1 7 e—k2/4 < {HEJZ e‘kz"‘

K)=—= [e Wy =8 [e "2)gx =&

gtk \/272’_’[0 N2 2, J2
%f—/

Jr
Note that: The Fourier transform of a Gaussian functions is a Gaussian function.
H.W. Plot both functions.

—ax? N k2 /(4
Prove that if f (X) =Ne , then 9 (k)= Ee ( ),and vice versa.

The Fourier transform of the Gaussian function is another Gaussian:
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Note that the width sigma is oppositely positioned in the arguments of the exponentials. This means
the narrower a Gaussian is in one domain, the broader it is in the other domain.

IMAGE QUALITY

The Gaussian function can approximate the behavior of an imaging system. In particular, if we think of a
very narrow slit of x-rays as being a line of delta functions, an x-ray screen will blur this delta line into a
broader "ridge". It should be obvious that we want this ridge to be as narrow as possible. The imaging
system's response to a delta function line input is called the LINE SPREAD FUNCTION, or LSF in the
spatial domain. The magnitude of the complex function which is the Fourier transform of the LSF is the
frequency-dependent function known as the MODULATION TRANSFER FUNCTION, or MTF.

Using what we have just learned about Gaussian functions, we conclude that the narrower the LSF, the
broader the MTF in frequency space. Since we want narrow LSF's to produce sharper images, we want
MTF's to stay high until a high spatial frequency is reached before it falls to zero. High frequencies are
associated with sharp features in the image, and the MTF is the system's ability to record information as a
function of frequency.

HEISENBERG UNCERTAINTY PRINCIPLE

In Quantum Mechanics, the Heisenberg uncertainty principle states that we cannot simultaneously know a
particle's position and momemtum (or direction of motion). This is because the position wave function and
the momentum wave function are Fourier transform pairs. The narrower one function becomes, the wider the
pair becomes. The better we know position, the worse we know momentum.
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It 15 of interest to observe that F{k} is also a Gaussian probability function with
a peak at the oTigin, monotone decreasing as kX — oo, Note, however, that i
f(x) is sharply peaked {large o), then F(k) is fiattened, and vice versa (Fig. ).
This is a general feature in the theory of Fourier transforms. Inquantum-mechanical
applications it is related 1o the Heisenberg uncertainty principle,

f(x)
3
Fik)
Large o T
X /\ k
Fik)

i — -k

Note that both f(x) and F(k) are Gaussian distribution functions with peaks
at the origin. The standard deviation, width, is defined as the range of the
variable x (or k) for which the function f(x) [or F(k)] drops by a factor of
e /4 = (0.606 of its maximum value. For f(x) = Ne **', the standard devia-
tion is given by
— Ax _ _I_'= .
x T .\fh
For

N
Fik) = Ki/da
(k) 772t
the standard deviation is given by
0, =25 = /.

2
Note that Ax Ak = (2//20)(24/2a) = 4. If & — 0 (small), then Ax — oo
and Ak — 0. For o, — oo (large), Ax — 0 and Ak — oo (see Fig. ).

fix)

I )

F(k)
]

I\
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Example (15.5a): Calculate the Fourier transformation of the function

e x|<a
f(x)_{o’ x|>a’ (a>0).

Answer: Its Fourier transform reads

_La e ':Le—ika_eika: Esm(ak)
F(k)_mjae dx NTEETE \/; ”

The functions f (k)andF (k) are shown in the following figure.

Sz}

Comment: This is the single-slit diffraction problem of physical optics. The slit is described by
f (x) . The diffraction pattern amplitude is given by the Fourier transform F(k ), where

F(O):a\/z.

Example: Dirac Delta function

. 1 % . . 1 % .
Start with f (x)=—— | g(k)e™*dk , and using g(k)=—=— | f (x )e ™ dx ' then
()Jﬂig() gg”mi()
f (x)=—LT —LTf (x e ™dx ' e™dk = Tf (x) if ek dx '=f (x)
27[ —00 27[ —00 —00 272. —0
S(x—x")
For a continuous function in three dimensions, one finds:
s(r-r)=—-[e¢' g 3 (15.21d)
(27) 2
1- Find the Fourier transformation of the triangular pulse.
1-|x X|<1,
oo FR <
0  Otherwise
Answer: For the given function (it is even function), the Fourier transform is:
1 1 ) ,'? 1
Fk )=— (1 —|x|)e™dr = Vll_f (1 —x)ecoskrds
V2T J T Jo

This can be integrated by parts to obtain

F(k )= V;? [U —x)sinkr  cos R’J:T _ v;'?l —cosk
i 0

PR TR



Prof. Dr. I. Nasser Phys571 (T-131) September 28, 2013
Fourier_Transf_phys571 T131

-r
2- Find the Fourier transformation of the function f (r) = € {Hint: use the spherical
r

coordinates where d 7 =r?sin@d d gdr ]
Answer:

e’ 1 e—r+i qr 9
f(nN=—= f(q)= 377 dr, dr=r°sinfdé&dedr
r (27[) r

e
|1=j
—br

_erj‘rzdr{—lqr e_lqr}er jdr[e('q o _g “q*b)r}

—br+iqer @

Iqr cos e
dr—jd¢jr2dr{jd cosée™ ‘9} -

0 0

e(lq —b)r —(ig+b)r

2

1 | 4z
iq iq—b |q+b |q b |q+b b?+q?

1 e FHiar 1 4r 2 1
f(a)= J dz ==
(22 )3/2 r (2 )3/2 1+q2 V71492

Example: Find the Fourier transformation of the function f (r) =e™ br [Hint:

—brtiqer
:je rq dr= 24”q2] , dz=r2sinodod pdr

Iy

- 1 —br+i g-
f(r)=e “:»f(q)—(2 e P aTd e
T

1 —_afe—bfi‘q'fdr 1 - 41 87b
(27[)3/2 ob r (272_)3/2 ob b2 +q2 (272_)3/2 (b2+q2)2
H.W. Calculate the following integrals:
eik-R 2 2
| = [k =
k R
R TR
ab (b? +q?)?
eiiq-r - ei'q( r) 471-
Iszj —dr = i"“.[ —dr =" liml, —etr
[r-r’ [r-r’ q
Table 3.1. Properties of Fourier transforms
Property If fix) is Then its Fourier transform
Complex conjugation  Real g (k)y=g(-k)
Real and even gk =g(-k)=glk)
Real and odd g (k) g(—k)=—glk)
Translation f(x—a) ag (k)
Attenuation fx)e™ g(k + ai)
Derivatives % Ffix) ikgi(k)
an
TR =) (kY g(k)
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