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The Variational Method

Introduction:

There are many problems of wave mechanics which can not be conveniently treated either
by direct solution of wave equation (e.g. H-atom, S.H.O.) or by using other approximated methods
(e.g. perturbation, WKB, ....). One of the most convenient and powerful methods of approximation
is the variational method, which is only applicable to the ground state energy level of a system (the
state of most interest to chemical and physical process). The variational method works best for the
ground state and in some circumstances (to be described below) for some other low lying states.

If we know the Hamiltonian, H, of a system, one may construct wave function ¢ belonging
to the same space; then the variational integral is defined as:

_(#H]9)
O

Theorem: if one chooses a trial wavefunction , ¢, then the Expectation Value for the energy is
greater than or equal to the exact ground state energy, E _, i.c. <¢| H |¢> >E, if <¢‘¢> =1
Proof: (we will use an orthonormal wavefunction ¢)

Assume that we know the exact solutions for ‘l//n > , L.e.
H|w,)=E,|v,) E,<E,<E,<-

It was known that the set of eigenfunctions,

l,un> of the Hamiltonian form a complete set of

orthonormal functions. That is, any arbitrary function, ¢> , with the same boundary conditions can

be expanded as a linear combination (an infinite number of terms) of eigenfunctions ‘l//n > .

B=Sal) = Hlg)=SaH lv)-Sat.lv.)

This can be substituted into the expression for < H > to get:

(#1H [8)=2a, ([H o) = 2 2 aa.B, (Wa i) = 2la [ Eoin
n=0 m n — n

n

a,[(E,-E,).

Om
Let E. =E, +(En —EO),then <¢‘H ‘¢>: EoZ‘an‘z +Z
n=0 n=0

But Z\an ‘2 =1 for the normalized function ‘Wn > , then
n=0

|
>0

(HH[#)=E,+ X[ (E.-E)) = (dH|g)=E,

positive quantities
Equal sign will hold only for the exact guessing of the trial function, i.e., you can celebrate getting
the exact ground state energy.
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Mathematically, the value E, is known as the lower limit to the sequence of the value | (@), which

obtained by assuming reasonable values for ¢. Usually the variational integral is depend upon a

: . .. dl
parameter or a number of parameters, A, , which could be determined by the condition —— =0.

The key in this approximation is a good guess of a trial wave function. You can make a good
guess of a trial wave function by considering:

1- Is the parity conserved? Is the wave function even or odd?

2- How does the wave function approach zero? Model the asymptotes correctly.

3- Pick something you can integrate. Numerical integration is appropriate if analytic integration
is not. The integral must converge in any instance.

Example: Use a trial function of the form ¢, (r) = Ne ™ to calculate the ground state energy of

the hydrogen atom. [Note that: H = —lV? —l, and V; =i22 r’ 9 .
2 r r-or or

Solution: First calculate the normalization constant N (use dz= r?sindd&dedr ):

© n 2z
<@l > :I|¢1s(r)|2d7= N 2jl’ze_zardrJ‘siné?dé’ Idgp
0 0 0

—_—
1 2 2

4a%

. . 2,-b
Using the standard integral: I re”dr= p? > Ve can have
0

47Z'|N|2%=1 = N =——
a

Second calculate| =< ¢, | H | ¢, > as follows:

e B e
7)= 2{r26rr or r 2Jr e r

a , o1 a-1 a’
{;(zr—r a)—;}lm{T—ﬂlm

~

H

Then
N T oe 2 300 a-1 az —2ar .2
1 @) =(p, [H |p,) =47 [ ¢, Hp,r’dr = 4a I[T——}e rdr
0 0

a’ 2!} a’

I ~
(2a) 2 (a)y| 2

=4a’ {(a -1) 5

2
Setting W@ _g = A _ 918 1 i 120 = a-1
da oa oa| 2
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And substituting this result back into W (a) gives

2
E =1, -2 _a =l—1=—— a.u.

2 2 2
This happens to be the exact ground state energy of a hydrogen
atom.
H.W1. Plot W versus a. to check the optimum value at a=1. A oo
H.W2. Calculate <T > and (\/ > and find the relation between them. é \
H.Wa3. Calculate <T > and (\/ > and find the relation between them. § 6 ) 06 12
H.WA4. Use a trial function of the form ¢, (r) = Ne o -
calculate the ground state energy of the hydrogen atom.

a (Hartree)

Variational Method Treatment of Helium
Recall that we proved earlier that, if one has an approximate “trial” wavefunction, ¢, then
the expectation value for the energy must be either higher than or equal to the true ground state

energy. It cannot be lower!!
(plH]g) _[orHaT

(gle) [ e

This provides us with a very simple “recipe” for improving the energy. The lower the better!!
When we calculated the He atom energy using the “Independent Particle Method”, we obtained an
energy (-4.0 a.u.) which was lower than experiment (-2.9037 au).

Isn’t this a violation of the Variational Theorem?? No, because we did not use the complete
Hamiltonian in our calculation.

Example: Calculate the ground state energy for the Helium atom using the following trial
function:

<E>=E, =

l/jls(rl’ rz) = Wls(rl)Wm(rz)

>
w,(r)=Ne™", N=,— 1=12
T

2
a is a variational parameter and “l//ls (r, )| dr, =1

where

Answer:
Start with the Hamiltonian:
A 1 1 2 2 1
H=—=-V——V-Z_Z4 Al
2 2% o, A
And put it in a simple form:
~ 1 a 1 a (a 2) (a— 2)
H =——V2————V2 — A2
2 ' r 2 r r r r (A-2)

1
Use the Hydrogen atom Hamiltonian in a.u.:

2
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1 a a’
22 =% w(r A.3
[ZV. rijl//(r.) () (A3)
One finds:
.. 2 2 2
@)= Imn)ms(e){—% 2.222,69, }mr)mr)dndrz

Taking into account the following integrations:

e—ariiq-r dr _ 247[ 2 ’
r a’+q
-2ar —2ar, 4
[l rfd e, [S—dz = [l (r)fd e, [S—dr, = _ 4
— I — r, (23)
and
J@ = [ [ —— ([ drd e, =2
T - \ S 8
one finds:
3 —2ar
| (a)=—a’ + 22 (a_z)jer dz+J(@)=-a’+2a@-2)+ ;—a2_28_7a

. 27 5
To find the optimum value for a, we use the relation 8\/; (@) =0 tohave a= 16 =7Z- 16 and the
a

lowest energy is:

2 2
E =t —ar-2a=[2) _[20)[2L)o (2] — 28477 aw=-7745 eV
8 16 8 JL16 16

. . 27
The lower value for the “effective” atomic number ( =2 "= 6= 1.69 vs. Z=2) reflects

“screening” due to the mutual repulsion of the electrons.
E,in =—2.8477 a.u. (1.9% higher than experiment) E .t =—2.9037 a.u.

The following table shows the theoretical and experimental values of ionization energy of the
ground state energy for He-like atoms.

Z | Atom | Theo | Exp | %error
(V) | (V)
He | 232 | 245 | 531
Lit | 74.1 | 75.6 1.98
Be™ | 152.2 | 153.6 | 091
ct 390 | 393 0.76
o% | 737 738 0.14

0| AN ||V

As we can see, the error decreases with increasing Z. One can improve (i.e. lower the energy) by
employing improved wavefunctions with additional variational parameters.
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A Two Parameters Wavefunction
Let the two electrons have different values of Z.s:

¢ A |:e -z 'rle -Z", +e—Z "rle -Z', :'

(we must keep treatment of the radial part of the two electrons symmetrical, since the spin part is
antisymmetrical)
If one computes Eyi, as a function of Z’ and Z’’ and then finds the values of the two parameters that
minimize the energy, one finds:

7’ =1.19, 2> =2.18, Egia =-2.876 au (1.0% higher than experiment)
The very different values of Z’ and Z’’ reflects correlation between the positions of the two
electrons; i.e. if one electron is close to the nucleus, the other prefers to be far away.

Another Wavefunction Incorporating Electron Correlation
p=Ale "™ (1+4b-1,)]

When Ey;q is evaluated as a function of Z* and b, and the values of the two parameters are

varied to minimize the energy, the results are:
Z’=1.19, b=0.364 and Eial = -2.892 au (0.4% higher than experiment).

The second term, (1 +b-r, ) , accounts for electron correlation. It increases the probability (higher

?) of finding the two electrons further apart (higher r,).

A Summary of Results
B =-2.9037 au

Wavefunction  Energy % Error

Ae P -2.848 +1.9%
Ae?1e g P ne | 2876 +1.0%
A7 (1461, 2892 +0.4%
Afe e e e o (14 b1, )| 29014 +0.08%
¢=Ale 1+ glrr,,r, )| 29037 ~0%
(39 parameters)

Notes:

1- The computed energy is always higher than experiment.

2- One can compute an “approximate” energy to whatever degree of accuracy desired.

3- The choice of a = Z reduces to the first-order perturbation theory in the previous section, which is
therefore equivalent to a non-optimum" variation calculation.

4- The physical meaning of a is that it represents the “effective charge" of the nucleus. The optimum a is
less than Z (the true nuclear charge) because the electron experiences the screening effect of the other
electron.
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Example Ground state of Helium atom (two electrons 1,2)

1 1 1 2
—— (5 + 53) — 22 (r +T)+f—
1

2 T2 ™2

Without the last term % the ground state wavefunction is just the product of wavefunctions
w100(71 ) u100(T2)

8
. 73 —(Z)rn+r2) ) 1 /Z\2 _zr
Y(ry,re) = ﬂage (“0) with Z =2 using ujgo(r) = N (G_o) e o

We will take the above expression as a trial wavefunction and take Z as an adjustable parameter
to minimize (¢|H|v).

First note that

1 /1 1Y\ i e2
<‘ —(p? +p3) — 2* (T + T) w> =2 ( w00 L wion ) — 4 %o || U100
2m T T 2m

From the Virial theorem for the stationary states, we know
2
2T) = (r-VV) = <Z—>

for hydrogenic atom V' = —Z?—’jg. Therefore, E = (T') — <Z?—92> = —(T)
<1L100 H100> =({T)=-E1=
7.2 72 2 2 7.2
<Z_8>:2<T>:Ze - <8_>:Z_8
r an T ap

1 /1 1 7262 4762
5 (B +Pz)—2€2(T+T)‘T§"’>: £ ==

2m IS ) ag ag
(rit+ra)

. ) e_ ao
() W= /[ dl"ldl"g
Trao |l'1 - 1"2|

This can be evaluated by using the addition theorem for spherical harmonics.

AT

2m

Hence, we have

(s

Now for the last term

e2

-

12

1 1 1 & /ra!
— a5 — (—) Fi(cos ), 6 : angle between ry and ry
riz -1 >y \T>
oo I
1 7<)f ( 4m ) .
= — 5 YiE (81, 01)Y,, (82, @
?>! 0(,{) 20+ 1 S~ l‘m( 1 l) I ( 2 2)

Since

/ Yin (6, 6)d2 = VT / Y (6, 6) Yim (8, )42 = VAT8108m0
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Therefore, integration over df2; and df)y leaves only [ = m = 0 term nonvanishing. Thus, we get

2 3
. dmeZ o0 o0 1 it
<€> _ ( e ) /’ ndu/ rzdrzfe 22 (r1+r2)
12 ?rao >
.73 o o —a0 (ritr2) o ﬂ1+ﬁ2)
= (425 ) /0 -r-fd-]'l [/0 -]-éd?ze 0 —|—/ lzdlg ]
0
2 _22,
4e73 = e ap 't 2z, ( ao a? a3 @
= ridr —e a0t ri+2 22 | + 22
( a3 ) /0 Al c 2z 1t 422”+ 75 ) + 2575
_2z,. 22 a a2
fe a0 e 3" (ﬁrﬁéﬂ
4eZ? az, (_a§ 5 aj - ~2., af
= ( ) |:] d?le 0 (—m —E'T'l +f0 'I'ld'f'le 0 E
_ (42| (a_o)s_a_ﬁ(a_o)2+ﬁ(a_o)2
a 122 \4Z 173 \1Z 173 \2Z
_ (%2} 2(@)5{_L_L+i}_§@
B aj Z 128 64  16] 8 ap

g o 2 2 2 , |
/;rze_“dr = e ([T + —3; 4+ =) and /xe_“‘”d.-r N e e
a a? a3 a a?

Hence, the total energy

using

s 7% 47Ze* 5 Z e
(H) = — SiEk=

ely) an 8 an
This is minimum when % =0

2 5 27
C(oz-4+2)=0 = z=2L
ao( +8) 16

Therefore, the upperbound for the groundstate energy is

e? | /27\? 2727 27\ 2 e? &2
— (=) == |=—-(Z=) —>—28—
ap 16 8 16 16 ap ap

This is the summation of the first and second ionization energy. The experimentally measured
energy required for the double ionization from He atom is —2.904;—0. The difference is only 1.9%.

Note

o 7 = f—é ~ 1.69 < 2 : screening between two electrons

e If we used perturbation theory by taking H 1 = =, then the first order correction in energy

Ze 5 e
ag ) '—1(10

is given by

AEW = (40| H |3} =

OOI\.Fl
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Then,

E=Ey+AEM = 2

22e2  H5eZ g2 5 11 €2 2
2(10 ‘—1(10 o ap

In general, the first-order perturbation calculation is equivalent to a nonoptimal variational
calculation because

E = Ey + (n|Hi|n) = (n|Ho|n) + (n|Hi|n) = (n|Ho + Hi|n) = (n|H|n)

e The above calculation valid only for the spin singlet state of He atom. (Pauli exclusion
principle)

Two identical particle system

Classical picture: Two particles are distinguishable.
Quantum picture: T'wo particles are indistinguishable.
¥(1,2) = ¥(2,1) — Boson

¥(1,2) = —(2,1) — Fermion

Z3 —(RZ—D) (r14r2
€

¥(1,2) 3
'l 0

) 1
X EU =1

= orbital part (symmetric) x spin part (antisymmetric)
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Ignoring electron-electron interaction, all 1s2s and 1s2p states have the same energy. The pertur-
bation (e?/4megryy) lifts that degeneracy, and we can treat it with degenerate perturbation theory.
Rather than evaluating the integral in the 4x4 matrix exactly, we can use a physical argument:
(€2 /dmegris) 1s not an external potential, and so applies no net torque or force on the electrons.
The perturbation cannot change the angular momentum, so it cannot mix states with different !
or m. The theta integral will be dy», and the phi integral d,,,,, total angular momentum remains a
good quantum number: L=0(1s2s) or L=1(1s2p). Since the 2s state has finite probability of being
at the nucleus, and the 2p has zero probability of being there, the 2s state is less well screened
from the nuclear charge by the 1s and will have lower energy.

For a given spatial excited state the possible normalised

spin wavefunction combinations, consistent with the anti- S e,

symmetry requirement are a spin triplet and a spin singlet. 210
1
So
| f 35
(DB - (@nim,n‘f’m’ - @n’!’m’.nfm)(TT)/\ﬁ 1
. . &
(@nhn.n'f'm’ - on’!’m’.nf?n) (i L)/\/i (1) 2p). (15)25)
{@nini.n‘i’m’ - @n’!’m’.nhn) (T L + l T)/2
(Dl = {Qnim.n'i'm’ + qﬁn’!"?n".nim){Tl- - lT)/2
Where |@nimaim) represents electron 1 in a hydrogenic is
- 0

state with quantum numbers n, ! and m and electron 2 —
with n',l’, and m/. The subscripts on the ® label spin
multiplicity (2S41)

Again whole effect of the potential is contained in the spatial part, the spin integral will be 4,
so off-diagonal matrix elements are all zero. We need to evaluate

-
(1s)”

Jni — <Qn€m.n’1"m’|{e /“17?607'12}‘@nim.n‘f’n:‘> - the direct lllt-egral-
Kt = (Grtmmirn| (€2 [4T€0712) | rrtrms mim ) - the exchange integral.
with which perturbation theory gives an energy shift in the 1s'2s! state of:

1 e?

2 Iren ({D100.2001/712|P100,200) F+{D200,100| L /T12] D200,100) £{P100,200 1/ 712 P200,100) £{P200,100|1 /712 100,200 )

where the 4 applies to the singlet state and the — to the triplet. The direct integral, electron-
electron repulsion, increases the energy, but the exchange integral can either increase of decrease
energy.

Thus the energy levels are split by different direct interactions into L=0 and L=1 and again
through exchange interaction into singlet and triplet. The final degeneracies of states with one
electron excited to n=2 are 3,1,9 and 3. The spectroscopic notation in the figure gives the quantum
numbers as: (nl)(n'l')*5t1L;

Again, the most useful quantum number labels are the total spin and angular momentum: we could
write the perturbation energy as AE = J,; — (25 — 1)K,;, even though the perturbing potential
does not act on the spin. The ‘exchange force’ selects preferred spin state via the requirement of
overall antisymietry.
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-~ ¥
z : “’“V;, Z-I( A’/—H I,P-H \ému‘?” Y_’(g).rfz)

/!

t W;A&-@mﬁa *MAMWW

Sl e S e
Per‘,;:—:-f:o,m=o

et] £ r” . ~AEY = . 274

£ :/ézd/dﬂl',g 0/-&5

£
v >

s Y,
P4 Al -2z
/62’0//171,/8 ,,/;ir:g

L]

-
§ 2 -2ZY -2
06z arn e Sty v e
o

L

W

X\

1z ~AZH _ _AZYn
-¢Zd/¢/0’4e L ar, azn )17

"

—_AZh ~AZn

4 o
+4z‘/ﬂ/|,rr,?—€ [f r('zzr|+|)j

®

[
¢ Y -2z,
-4$Z r; 1 10 /
# O/J,e z—z+z,]+4z/arr,

= 5.
?Z

10
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39 _1z(r,+rzj
R Q’ﬁ?‘—\""rﬁ (Z) J”“tf‘”; _
M -nl
A 47 & Ak k- 6-1)
Wt T @e)d 9 ke
2 aF CAF ruF ckii-2Zv o _ckF-azh
AR L L H 28 Ty € jdf
i wr)"J kLJ ' :
. . 1 kFobr
oy Hur Tandand “doia 42§ 2 AF & LA
_ (¢*+17)
¢ _
SR 2. s{/srz! dk
w* (:m}3 (Beaz)t R
Zgﬁxlé Ak Li - ok ik
Tt (R 421)# R = 47
\_,___W
8- ur wﬂ’kz =,,,7~J 27 dx ok
(5 47%)° Tzt 2Z
- dX
“zamz”’df Nk
R= 5
> Z
(A sl e L w
o) T 2 2l T amd " T5 5

11
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3 —-Z(‘fu-"‘(i)
dacny  FO, o) = '?r e
¥ e wloapsl

- (ANEFNL dRdh
iz

SNy &YV 9 T=vi-Yo 2 bl:"fn, ’ ""‘°{
AV dFy = At Y uds dt dd

~ugtg U, CXUZLS X 0

z 4
s T= n‘"(E?}zjdsj o{dj At e S-tu
+ - ﬁ' . - 7, u

= 5 7z
8

12
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Example: consider the ground state of the hydrogen atom. Although we know that we can solve
this problem exactly , let’s assume that we cannot and use the variational method. We will
compare our variational result to the exact result. Because 1=0 in the ground state, the Hamiltonian
operator is:

H =—1Vf—l,v§=i23r23. (1)
2 r r-or or
Even if we did not know the exact solution, we would expect that the wave function decays to
zero with increasing r. Consequently, as a trial function, we will try a Gaussian of the form

2
—ar . .. . .
¢(r) =Ne where « is a variational parameter. By a straight forward calculation we can
show.

3n7 e’
4\2m a"?  dga

4ﬂT¢*(r)H G(r)ridr =
and that '

T 5 7\
47[_([¢ (N(r)rdr :(Zj

Therefore from equation Euia = %:
3ta ela'?
E(a)= 2m, - 12 807Z3/2 (2)

We now minimize E (&) with respect to ¢/ by differentiating with respect to & and setting the result equal
to zero. We solve the equation:

dE(a) 30 e
da 2m, a"s 271)"

e

For o to give

24
o= m.€
B 3
182 °n* @
As the value of & that minimize E(« ). Substituting equation 8 back in equation 7
4 ( me? m_e*
in =~ s oy | = 0424 s @
3r\l6g, 7w h log, 7°h
Compared with exact value
1{ me’ m.e*
Bo=—3| 772252 | = 70500 ——~ (5)
2\ l6g ;7w h log n h

Note that E,;»> E, as the variational theorem assures us.

13
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Merzbacher Exercise 8.4
The wave function is:

w(x)=Ne ™
And the potential is:

R d>
e V>0

The normalization condition gives:

o 1/4
(wlw)=N?[e " de=N?[Eal = N :(ﬂj

K d? e
Twy=—— =—-e ™ 1-2x2
Ve  om e’  2m ( )

2

__h_2 20O —2x2 _ 2 _n
(wiTly)=-—N Le A=Ay = 2

24
N2i+a

% 22
W = ([T |y)+{wV Mzgfl—vo\/ms

Using 7 =V, = a =1, then the condition

(wN |w)=-N 2J‘Voe"“ze’uxzdx =V

And

%:o, gives A, =0.374, A,=-1.109
oA
and
W (1) =-1.903

14
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Merzbacher Exercise 8.5
The wave function is:

y(x)=
0, x| >a
And the potential is:
2 2
___ZZ__Ei__z;. 1 kx 2
2m dx° 2

The normalization condition gives:

(y|w)=C’ f(l |)0IX

t X X
=C? I(l+g)2dx +I(l—g)2dx

a/3 a/3

—c? {236‘} 1 - =2

Note that' we will use the integral:

d t(dy )
Jrigrov il 16

—
=0

The expectation of T and V gives:

IS P S N P 1
WwiTly)=--C _ja(l S (-

o3 x| 35’
- 1— -
" 2m 2a J’de ( a )] 2ma?

—2/a

L fasBheqokd _ma?
(y/[v|y/>_2kja(1 )= k =mw

“Lye Tx 214+ dx + T x 2 (1= X2dx
2 ° a . a

a’/30 a’/30

3 2
132, @,

22230 20
And

15
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3r* a’ "
715K
2ma- 20

W =T |v)+w M [v)=

The condition
oW . . 30K (307‘1 j”“
—=0, gives a' =—— = a=—
m mk
and
W =0.5447ho > 0.5hw, as expected

1- Apply the variational method to the determination of the ground state energy of the
hydrogen atom, using y/(r,b) = Are ™ as a trial function. Here, A is the normalization
constant and b is the variational parameter.

a. calculate N .

calculate <T > .

c. calculate Q\/ >

d. calculate W (b).
e
f.

s

calculate b.
calculate E

Discuss your final result, for example: compared with the exact, the behavior of the wave
function. [Hint: T = —l{%i r? i}, V (r)= _l]
2lr or or r

16
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Answer:

17
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Tl —Hre*"®

e " Nr
r¥l -r ¥1
Pt ] ]‘:2
F
r¥2 = (r ®1)
e fro i 4
oo = Integrate[xT®2, {r, 0, o}, Assumptions & a > 0]

3 NE
4

(#calculate the normalization constant w)

2
Hn = Solve| [J d¢ ] * [rsin[ﬂ] de ] ¥ (co) =1, H|
1} 1}

{{vs-S=1 (s =1

Hnorm =Hn[[2]]

}

c\{‘E’rZ

YEE

{u -

T = - 8y (xr? 0, ®1) [/ Simplify

2r2

& T N (Z -4 ra+rad)
Z2r

AveraqgT = IntF_!g'J:'atvE[]:'2 FlsT , {r, 0, @}, Assumptions > a> 0] f coc
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-1
AveragV¥ = Integ::'ate[]:'2 Pl — ®1, {r, 0, o}, Assumptions + a > 0] /cc
r

Z

W = AveragT + AveragV¥ // Simplify
= (=3 +a)

— (-3 +a) @

&

p3 =Plot[W, {a, -0.7, 3}, Frame - True, PlotLabel -+ " Plot W wversus o',

Plot W wersus o FrameLabel = {a, We}]

0.4
0.2
u
= u]
-0.2z
-0.5 0 0.5 1 1.5 2 2.5 3
o
- Graphics -

varparam3 = Solwve[0,W =0, a]

{{as =1}

Vooeff = varparam3[[1]]

e
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W /. Veoeff //NH

-0.375

& =&1 /. Hnorm /. Vcoeff

YR F

4 nf 2

p?2 =Plot[¥®, {r, 0, 8}, Frame <+ True, PlotStyle -+ {R6GBColoxr[1l, 1, 0.3], Thickness[0.018]},
PlotLabel -+ " Plot ¥ wersus r", FrameLahel - {r, ¥}]

Plot ¥ wversus r

- Graphics -

Pexact =He™ J. {N_) %}

& ¥

=

pl =Plot[®exact, {r, 0, B}, Frame - True, PlotStyle - {RG¢EColox[1l, 0, 0.3], Thickness[0.018]},
PlotLabel -+ " Plot ¥ wersus r'", FrameLabel = {r, Texact}]

Plot & wversus ¢

- s3raphics -

Show|[pl, p2]

Flot & versus r

o T
[}
[ TR S R U B S ] |
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Comment:
-0.375 > -0.5 which satisfy the variational approximation claim. The difference is mainly due to
the behavior of the wave function at the origin.
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