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or in the interaction representation
Vi= =3 vafa(®). (14.6-48)
a .

We may wish to know the response associated with the change in expecta-
tion value of one of the operators ¥y, say y,,‘. From (14.6-44) it follows that

Ayl =Y f * Ku(fit = )dt (14.6-49)
where
Kaal®) = 3 <30 v = 9D (14650
or in terms of a density operator ‘
Kl = £ T30, vt = 210} (146-51)
Similarly the susceptibility is
Toal@) = [, Kualt)e™
L[ Tl e - dllple 0465

An application to optical susceptibility is discussed in Section 24.4.

One-Electron Atoms

CHAPTER 15

DIRAC EQUATION

The phenomena occurring in atoms and molecules are describable, for
the most part, on the basis of nonrelativistic quantum mechanics. 1t is
nevertheless advantageous to start with the relativistic equation of Dirac
and to proceed to its nonrelativistic approximation. In doing so one obtains
expressions for the various interaction terms that appear in the Schrédinger
Hamiltonian and no further derivations are required. Strictly speaking, this
approach is rigorous only for the one-electron case because the Dirac equa-
tion applies only to a single particle. Still, much of the information obtained
by this route is also applicable to a many-electron system.

The Dirac equation for a free particle serves t0 introduce the formalism.
Electromagnetic couplings are then added and the approximation to order
v?/c? provides the desired results.

15.1 Free Particle Equation

The time-independent Dirac equation for a free particle is

(co - p + pmc W = Ev (15.1-1)
in which
000 1 0 0 0 —i
o010 fo 0o i o
=10 1 0 O %=lg —i 0 O
1000 i 00 O
(15.1-2)
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and, substituting in (15.1-16),
2

p
EV, =+ .
¥y om ¥, (15.1-19)
or
W,
E, = —— . .
Y o V3, (15.1-20)

Equation (15..1—20) is still in two-component form since ¥, is a two-com-
ponent function. But each component of ¥, satisfies (15.1-20) so that we
may drop all subscripts and write
h2
Ey = —— V? -
1/ o Viy ‘ (15.1-21)

which is the time-independent Schrédinger equation for a free particle.

15.2 Dirac Equation with Electromagnetic Coupling

The free-particle Dirac equation (15.1-1) must now be modified to include
effects due to external fields. Classical considerations suggest how this may
be accomplished. In the presence of external fields a possible Lagrangian
for the system is

1 q

L=-m®+=

3 mv° + -

in which v is the velocity of a particle with positive charge g and mass m,

A and ¢ are the vector and scalar potentials, respectively. The fields are
then given by

v-A—qo (15.2-1)

10A
B=VxA, E=-—-—-Vo 2-
~ 5 @ (15.2-2)
To verify that a Lagrangian of form (15.2-1) leads to correct physical results

it is sufficient to demonstrate the derivation of the Lorentz force law

1
F=q<E+Ev x B) (15.2-3)
from (15.2-1). Thus the Lagrange equations
d (oL _ oL _ o
ilaz) = ®=xna (15.2-4)
with the Lagrangian as in (15.2-1), become
ox,  cdt (15.2-9)

15.2 DIRAC EQUATION WITH ELECTROMAGNETIC COUPLING Qe

where, for example,

dA. (A, CA, CA. CA
s _CA . AL CAL CA 15.2-6
LSRR TE T (152-6)

is the total time derivative of A, and the last term on the right represents
the intrinsic time dependence, if any, of 4. Since
éL ¢ <5Ax . o4 OA, ) do

— = ¥y At g —
éx ¢ Exd\+8x}+8x‘/ q@x

the Lagrange equation (15.2-5) for the x component is
. 184, @A4,\. 1/[éA, @4\, 184, 0Jo
m¥ =q| -\ =— — - — —_— == —
! 1 c\ éx dy Y= e\ez éx ¢ ot 0Ox
1
=61[Ex+;(v xB){l:F,. (15.2-7)
The other components are obtained in similar fashion thus verifying the

derivation of the Lorentz force law from (15.2-1).
On this basis one may now proceed to define the canonical momentum

oL q
= ——=mx; + - A 5.2-8
pl ax-' mxl + c 1 (1 )
and the Hamiltonian
oL 1 g .\
= —_ X — = . — = —— —_ A . l .2'
H ;axix, L=p-v—L 2m<p - ) +qp. (152-9)

Equations (15.2-8) and (15.2-9) indicate the modifications in the canonical
momenta and the Hamiltonian brought about by the presence of the external

fields.
It will now be assumed that the same modifications can be introduced into

the free particle Dirac equation (15.1-1) so that the proper equation for a
particle of (positive) charge g and rest mass m in a field with vector potential

A and scalar potential ¢ is
[o-(cp — qA) + Bmc® + qo ]y = EY. (15.2-10)
Needless to say this classical development is merely suggestive; the Dirac
equation is to be regarded as a fundamental equation whose validity must be
investigated—ultimately by resort to experiment—independently of any
classical arguments. In two-component form, by analogy with (15.1-9),
G - (cp — AW, + (mc® + qoWu.= E, (15.2-11a)

6 - (cp — AW, — (mc® — qo)¥, = E¥,. (15.2-11b)
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Therefore

(6 m*E — q¢) + (E' - q9)(o - m)*
= (6 - m)[(c - m)(E' — q¢) — (E' — gp)(o - m)]
~[(e - m)(E' — q9) — (E' — q9)(c - m)](6 - m)
+ 2(0 - n)}(E' — qo)(6 - @)
=qh’V.-Vp — 2ghc - n x Vo

+ 2(6 - )(E' — go)(0 - m). (15.2-27).

Substitution of (15.2-27) into (15.2-24) gives

, 1
(E = a0 = gl = g o

+q_hzv,v qh
8m2c by o AR Vo [y. (15.2-28)

Also, from (15.2-16),

1 1 2
Y q gh
(6-m)° = <p——A> _%G-V x A (15.2-29)

1 4

lie-ar=2

z2e =2 (15.2-30)
1

1 .
=P x Vo =c—2(—th x Vo — Vo x p). (15.2-31)

1
= —c—2V¢xp.

We shall now replace g by — e, where e is the magnitude (absolute value) of

the electronic i . -
eyt charge, to obtain the Dirac equation for an electron to order

, 1 e \? h
(E'+ e =|— hd o
oW [2m<p+cA) +5 -0 VxA

-5 ———>5V-Vp - o'-Vgpxp:llli. (15.2-32)

8mc?  8m?c 4m*c?
?quation (1 5.2-_32), whif:h may also be regarded as the Schrodinger equation
for an elect.ron 1qteract1ng with fields describable by the potentials A and ¢
is the starting point for discussions of atomic and molecular properties. Thej

15.2 DIKAC EQUA LIV Wil Bt

significance of the various terms and their energies, indicated to within an

order of magnitude, are:
ep scalar potential energy (10°cm™?).

(1/2m)(p + (e/c)A)* contains kinetic energy and interaction terms with a
field represented by a vector potential A (10° cm ™).
The interaction terms are responsible or contribute to
numerous physical processes among which are absorp-
tion, emission and scattering of electromagnetic waves,
diamagnetism, and the Zeeman effect.

(eh/2mc)e -V x A interaction of the spin magnetic moment with a magnetic
fieldB=V x A (lem™).

p*/8m3c* this term appears in the expansion of the relativistic energy
4

P b
232 2 2
(me*) + C=m+——5=33 T -
(me)” +p 2m  8mic?
It is therefore a relativistic correction to the kinetic energy
(0.1cm™?).

—(eh?/8m*c*)V - Vo  produces an energy shift in s-states and is known as
the Darwin term (<0.1cm ™).

—(eh/dm*c®)e - Vo x p  spin-orbit interaction (10-10*cm ™).
P

o0 add a word of caution concerning the validity of (15.2-32)

It is necessary t
which contains the approximation
2mc? E —qo
K=o~ 1=y
E' + 2mc® — qo 2mc

Clearly, this will not be legitimate if ¢ becomes singular as it does, for
example, in certain hyperfine interactions. In such cases a separate treatment

is required (see Section 18.1).





