CHAPTER 11

SLATER DETERMINANTS

11.1 Matrix Elements—General

In Section 8.4 we saw that multielectron wave functions y(1,,4,,. . .,4y)
must be antisymmetric with respect to an i ¢ of the (space and spin)
coordinates of any two electrons. Antisymmetry can be ensured by expres-
sing the wave function in terms of Slater determinants as in (8.4-13). To
facilitate the calculation of various physical quantities, we shall need ex-
pressions for matrix elements of operators when the wave functions are
written in determinantal form.

Consider a two-electron system and let
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In y,(4;), k is a label that identifies a particular spin orbital, i.e., a one-

electron function that depends on both space and spin coordinates; the
index i is an electron label. The notation may be shortened by writing

¥, = , (11.1-1)

) (11.1-2)

: (11.1-3)

YA = Y (i). (11.1-4)
It will also be assumed that for any two spin orbitals such as ¥, and ¢,
(@) = - (11.1-5)

This has the immediate consequence that
I = 655 (11.1-6)

where ¥; and ¥; are any of the determinantal functions (11.1-1)-(11.1-3).
Let us now suppose that we have a sum of one-electron operators

F=fi+/f,

where f, and f, have the same functional dependence but f; operates only
on the spin orbital occupied by electron 1, namely y(4,), ar.ld f> operates
only on Y(4,). Since variables of integration are dummy variables we may
write

WOy = WL, = Wil f Wi (11.1-7)
Therefore, in view of the orthonormality relation (1 1.1-5),
CH|FIE> = Ul + Ol (11.1-8)

with analogous expressions for (¥,|F|¥,) and (¥3|F|¥5). For the off-
diagonal elements

Q¥ |FI¥,) = U o, (11.1-9a)
¥ |Fl#5y =0, (11.1-9b)
QP FI¥3) = — <yl fim>- (11.19¢)

A two-electron operator g,, operates on both IPQ»{) and ¥(1,), ag, for
example, in the case of the electronic Coulomb repulsion operator e*/ry,.
For a typical diagonal element

<q’1|g1zl"P1> = <lpj(1)|l/k(2)lgl2|'l/j(1)ll/k(2)> - <‘/’j(1)'//k(2)l912“//k(1)\//j(2)>,
(11.1-10)

and for off-diagonal elements

(‘I‘1|g12|‘1‘2) = <¢'j(1)‘/’k(2)‘gl2“/’](1)‘/31(2)> - <Wj(1)§0k(2)lg12"/’1(1)‘/11'(2»,

(11.1-11a)

<\P1I912|\P3> = <|//j(1)'/’k(2)‘gl2||l’l(1)l1/m(2)> - <‘/’j(1)l//k(2)l912l‘/’m(l)¢z(2)>,
(11.1-11b)
<"}’2|91le3> = —<‘pj(1)W1(2)l91zll//m(l)'lft(z» + <‘I/j(1)‘//1(2)lg12l‘pt(1)¢m(2)>-
(11.1-11¢)



These results for the special case of the Slater determinants (11.1-1)+11.1-3)
may be generalized to determinants of arbitrary dimension. Thus, let

al(l) az(l) e aN(l)
1
A=\/—N_!a1(;2) 02(;2) aN(Ez) : (11.1-12)
&(N) a(N) -+ ay(N)
bi(1) by1) or ba()
1
== bl(;Z) bZ(;z) b"(zz) , (11.1-13)
by(N) by(N) -+ by(N)
F=2Xf (11.1-14)
G=2 65=32 9us (11.1-15)

in which (i), b,(i) are spin orbitals; f; and g;; are one- and two-electron
operators, respectively.

. 'We must also take note of the order in which the orbitals appear in (11.1-12)
and (11.1-13) because an interchange of two columns (or rows) will change
the sign of the determinantal wave function. As previously written the order is

Al 1,85, Gy Qi1 e -5y gy - - 58N,
B: bl’bz"'"bk,bk“‘l"",bl’bl+1""’bN'

For the diagonal matrix element of F,

CA|F|A> = k; {a far (11.1-16)

in which the argument of a, and the subscript on f have been omitted, as
they will be henceforth, since they are arbitrary (see, for example, (11.1-7)).
The matrix element {B|F|B) has the same form with respect to the b orbitals.
For an off-diagonal matrix element

(A|F|BY =0 (11.1-17)
if A and B differ by more than one pair of orbitals, and
CA|FIBY = +<af]b> (11.1-18)

if @, # b;, but the rest of the orbitals in B are the same as those in 4. The
plus sign occurs when an even number of interchanges are required to move

the b, orbital into the kth position or, in other words, when the parity of the
permutation is even; the minus sign appears as a result of an odd-parity
permutation. Examples of (11.1-18) are provided by (11.1-9a) and (11.1-9¢).
It may also be remarked that for one-electron operators such as (11.1-14),
simple product functions, and determinantal functions give the same matrix
elements.

The diagonal matrix elements of G are

<A4|Gl4) = kZ [{a(Da,(2)|g1]a(D)a2)

— {a(1)a(2)|g12]a(Da(2))] (11.1-19)
and for off-diagonal elements we have the cases:

(1) If A and B differ by more than two pairs of spin orbitals,
(A|G|B) =0. (11.1-20)
(2) If A and B differ by two pairs of orbitals, ie., a,a, in 4 are not the
same as b,,, b, in B but all other orbitals in 4 are the same as orbitals in B,

<A|G|BY = +[<a(D)algs2lbm(DB2)

— (1) a(2)|g12}ba(1)bm(2)>]. (11.1-21)

(3) If A and B differ by one pair of orbitals, e.g., a, # b,
<A|G|By = Zk [Ca(D)a(2)|g,2|bi(1)a(2))
t#

— {a(1)a,(2)|g12]a1)b(2)>]. (11.1-22)

" The same rule as in (11.1-18) applies to the + signs in (11.1-21) and (11.1-22).
Examples of diagonal and off-diagonal elements are given by (11.1-10) and
(11.1-11).

It will now be assumed that the general spin orbital a(/;) consists of a
product of a spatial function ¢,(r;) and a spin function ¢;%(m,). The latter is
always either an o or a § spin function depending on whether m, is +% or —3.
Thus

ah) = @dr)f(m)  or  a() = @ )& (m).  (11.1-23)

Therefore
<a‘f|b> = <(pa‘f|(pb><éa(ms)|€b(ms)> = <(pa|f|(pb> 6(msa9 msb)
(11.1-24)

in which the orthonormality of the spin functions has been inserted.
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Ifa, b, c,and d are spin orbitals of form (11.1-23), the general matrix element
of a two-electron operator becomes

<a()b(2)lg;2c(1)d2)> = {Pa(DP4(2)|g12|0:(1)@a(2)>
X <éla(ms)I5lc(ms)><€2b(ms)|€2d(ms)> . .
= (a0 |912]0(1)@a(2)) 8(m?, m ) 6(m, mS).
(11.1-25)

11.2 Matrix Elements-—Special Cases

We shall now specialize the discussion in two ways. It will be assumed that
the spin—orbital a(i) in (11.1-23) is given by

1 ) a a, e
a(i) = Ryy(r;) Y i, (2)E(m,) = - Pyy(r))Yia, ()¢ m),  (11.2-1)
that is, the spatial part of a(i) is a product of a radial function and a spherical
harmonic; and that

g1z = €y/r12 (11.2-2)
in which r,, = |r; — r,| is the distance between electrons 1 and 2. With these

assumptions, integrals of the type that occur in (11.1-24) and (11.1-25) can be

iven a more explicit form. ' _ . '
¢ As a first step, e?/r,, is expanded in spherical harmonics as in (1.2-22):

i ooy Lty 112-3
e Y syt V@0 (129
Then
<a(1)b(2)|g;2|c(1)d(2)>
2
= <a(1)b(2) Al c(1)d(2)>
Tis
L po (V2 (@0) - P2 )V (@) || L P ) V(@)
= TIP‘;.(H) lm,( 1 r n\F2) L 322 rial 71 '
X l— P‘;tl(rz) Y‘liml(QZ)> 6(msa7 msc) 5(msb’ msd)' (1 12'4)
ry

When e?/r, , is replaced by (11.2-3), the radial part of (11.2-4) is a sum over
quantities such as

@ r<"

R¥(abcd) = ¢ fow J‘o Pl Poy(ry)Po(r2) Pa(ry) Pafra) dry dry. (11.2-5)
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FIG. 11.1 Regions of integration for Eq. (11.2-7).

Integrals of this type may now be evaluated: Let

k .
I= ﬁ)w fow % f(r)g(rs)dr, dr, (11.2-6)

where it is understood that r . means the smaller of the quantities r, and r,

while r, means the greater of the two. If the integration space is subdivided
into two regions as shown in F ig. 11.1, then

k k
1= ar, I l%f(’l)g(rz)drz + [ ar, [ % fer)glr)dr,. (11.2-7)

Inorder to perform the radial integration we require the radial wave functions

which, for a multielectron atom, necessitate rather elaborate computations
(see Chapter 19).

The angular integrals in (11.2-4) are of the form

4
ri T Y Q0| Y Q)| V5 (Q1)> ¥ Q)| Gl )| YE, (Q,)).

im;

These are readily evaluated by means of the general formula (1.2-29), namely:

§ I
| Yyl = (=17 \/(2 +1)(2I:1 E D@+ 1)

' L N/r L |
x(_m, M m><0 0 O) (11.2-8)

which is nonvanishing only when

~m+M+m=0, I'+L+liseven, AW'LD.  (112-9)
It is customary to define a quantity c*(Im, I'm’) as

. 47
t(Im, I'm') = i Yoo Y | Yoo D (11.2-10)
= (= 1=2k'm, Im).




&40 11, OSLALIER DRILRMINAINLIY

These integrals have been evaluated for special cases and are tabulated in
Table 11.1. Remembering that Y§, = (—1)"Y; _,, and adopting the notation
in which m,,m®, ... are the projection quantum numbers associated with
Y5 Yoms - - -» We have, from (11.2-9), the conditions on the projection
quantum numbers:

-mf—m+m=0, —mP +m+mf=0,

or m? + m® =m’ +m. - (11.2-11)
TABLE 11.1
*(im, I'm’) for s, p,and d Electrons®*

k
m m
0 1 2 3 4
ss 0 0|1 0 0 0 0
sp 0 +1 | 0 | —v/% 0 0 0
0 olo ¢ 0 0 0
pp |7 %1 #1 | 1 - V¥ 0 0
= I{ %1 ol 0 345 0 0
1 | ¥1} 0 . - V%5 0 0
0 0o} 1 ()} Vs 0 0
sd 0 +2 1 0 0 V% 0 0
0 +1 0 0 -~/ 0 0
0 o| o 0 V% 0 0
pd +1 +2 | 0 | =% 0 V¥%as 0
+1 +41 | 0 Vs 0 ~v/%as 0
+1 0 0 | —vis 0 V18445 0
+1 F1 0 0 0 /3%, 0
+1 F2 | © 0 0 V38445 0
0 +2 |l 0 0 0 NS TP 0
0 +1 | 0 | =/ g - :;245 g
0 0 0 Vs 45
dd +2 +2 1 0 —-vV¥%s 0 Via
+2 | 1 | 0 (i} V% 0 -vV¥a
+2 0 0 0 —%% 0 v m
+2 F1 0 0 0 0 -v3%a
+2 ¥2 0 0 0 g V\/";’én
+1 +1 1 0 VYo -v1%a
+1 0 0 0 Yo 0 V3%
+1 F1 0 0 —~+/%s 0 —-vV*%a
0 0 1 0 L 0 V3%

¢ Slater (1960). ® Where two * signs appear, the two upper or the two lower signs are
taken together.

Combining (11.2-3)—(11.2-5), (11.2-10), and (11.2-11),

2

e
Ty2

<a(1)b(2)

c(l)d(2)>

= 5(msa9 msc) 6(msb7 msd) 5(mla + mlb, mlc + mld)
x Y K(lPm, Ieme) t(1myf, P'm”)R¥(abced). (11.2-12)
k=0
A special case of (11.2-12) is one in which

a=c, b=d. (11.2-13)

The resulting integral J(a, b) is known as a Coulomb or direct integral and
is given by

2

e
L&Y

J(a,b) = <a(1)b(2)

a(l)b(2)> : A(11.2-14a)

2

e
Ty

= <<0a(1)<0b(2)

<pa(1)<pb(2)> (11.2-14b)

=Y ('ms, I'mf)ct(PPm, 'm")R*(abab),  (11.2-14c)
k=0 ak FK
or defining
ad(°mp2, PmP) = (I*m®, °'m®)*(Pmp, IPm))
47 ‘
=k +1 1mf| Yol lomy®y (PmP| Yeo|Pmy™>,  (11.2-15)

F¥n°l°, nPI?) = R¥abab),

« ffw T<k
=& [ [ e P PIPUCDT drydry. (112:16)

we have

o)

Jaby=Y dF*=J(b,a). ‘ (112-17)

k=0

Numerical values of a*(Im,!'m’) = a*(I'm’, Im) are tabulated in Table 11.2.
A second special case occurs when

a=d, b=c
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TABLE 11.2
a*(im, 'm') for s, p, and d Electrons®®
k
m m
0 2 4
ss 0 0 1 0 0
sp 0 +1 1 0 0
0 0 1 0 0
PP +1 +1 1 Yés 0
+1 0 1 —2¢5 0
0 0 1 345 0
sd 0 +2 1 0 0
0 +1 1 0 0
0 (1} 1 0 0
pd +1 +2 1 . %8s 0
+1 +1 1 —3s 0
+1 0 1 —%s 0
0 +2 1 —%3s 0
0 +1 1 %45 ) 0
0 0 1 445 0
dd +2 +2 1 49 Ka
+2 +1 i —~2%40 —%
+2 ] 1 ~%4s %441
+1 +1 1 20 18441
+1 0 1 %40 ~23441
0 0 1 449 39441

¢ Slater (1960). > Where two e signs appear, they can
be combined in any of the four possible ways.

This produces another integral K(a, b) known as an exchange integral:

2

K(a,b) = <a(1)b(2) b(l)a(2)> (11.2-18a)

2

<p,,(1)<p,,(2)> (11.2-18b)

= o(m,’, m) <<Pa(l)%(2)

= 8(m2,mp) i &(1°m?, IPmP)c*(1°m, IPm»)R¥(abba).  (11.2-18¢)
k=0

We define b¥(Pme, Im?)
G*(n°I°, n°I*) = R¥*(abba),

= [H(Eme, Pmt)]? (11.2-19)

NN j;l Poy(r ) Poy(ra) P (r )Po(r;) dry dry. (11.2-20)
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Then

[K(a, b) = 6(m2,mp) Z b*G* = K(b, a). 7 (11.2-21)

The radial integrals F* and G* are both positive and are known as Slater—

Condon parameters. Often it is convenient to define related parameters as
shown in Table 11.3.

TABLE 11.3

Slater-Condon and Racah Parameters

Slater-Condon Racah

s Fo=F°

Fo=F°
P F,—Fps

Fo=F° A=F,— 49F,
d F,=Fa9 B=F, - 5F,
F, = F*/441 C =35F,

Fo=F°

= F2/225
F, = F*/1089
Fo = F5/184041

Two electrons with the same values of n and [ are said to be equivalent. In
that case the radial parts of the two wave functions are the same, i.c.,

Po(r)) = Po(r)
or
n® = n’, [*=1°
and the integrals in (11.2-16) and (11.2-20) become identical so that
F¥ = G~ (11.2-22)

~. The integrals J(a, b) and K(a, b) may be expressed in terms of two operators

%,Qand K, known as Coulomb or direct and exchange operators, respectively,
ere ..

2
Coulemb  Jy(1)a(l) = [ f b*(2) %b(z) drz] a(1),
- (11.2-23)
EKCl'\anjf K,(1a(l) = [ f b*2)—a(2) d‘rz:l b(1),
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or, in terms of spatial orbitals alone,

e2
To(D@a(1) = [ [or@) a0 drz] 9u(1),
(11.2-24)
K, (Dgu(1) = [«S(ms m) f D <p,,(2) dl’z] 2u(1).

The Coulomb and exchange integrals may now be written as

2

J(a,b) = <a()Jy(V)]a(1)} = <a(1)b(2)

a%l)b(2)> (11.2-25)

2

K(a,b) = (a(1)|K,(D)|a(1)) = <a(1)b(2) b(l)a(2)> (11.2-26)

as in (11.2-14) and (11.2-18). It is also observed that if
G = Z ez/rij,

i<j
it is possible to express (11.1-19) in the form
§
diccomed matixe | (A|GlA> = Y [Jk 1) — Kk 1)] (11.2-27)
6 L k<t

“2lepvent

where A is a determinantal wave function such as (11.1-12).
Let us now consider the Hamiltonian

= Z.#o(t)+ Y ey (11.2-29)

i <j
where
2 2
, Di Ze
Ho(i) = _
0(1) 2m

and a wave function y(,,4,,...,
Slater determinant

Jy) expressed in the form of a single

Yi(d) ¥aldy) o ¥w(dy)
Wy 1 W U»z) ‘//2(/12) ‘/’N(.'lz)

(11.2-29)

Ei

Wi sl - i
in which y,(4;) = (i) is a spin orbital and
<‘/’k(l)|‘/’1(l)> = 5kj-
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We shall be interested in the total energy
E = (Yo
which may be written, with the aid of (11.1-16) and (11.1-19) as

2
E= Z WO DD + X [<l//i(1)!/1,-(2) ‘:}—2’ !Pi(l)t//j(2)>

<l// (Ly; 'l',(l)l/a(2)>] (11.2-30)
or, in terms of the spatial orbitals, using (11.1-24), (11.2-14), and (11.2-18),
F=31+3 [<<p co(l)<p,(2)>
2
where
L= Yl olyi> = (@il # o|@:)- o (112-32)

An important special case is one in which the determinantal wave function
represents a system of 2N electrons distributed among N spat1a1 orbitals
each of which is occupied by two electrons with opposite spin. Such a
system is known as a closed shell. We consider a specific example. Let

@:(Da(l) @ (DB(I)  @x(Da(l)  ¢x(1)B()
_ 1 @ . _ : _
Y= Ja1 |0:3)(3) : : : (11.2-33)

@1(4)a(4) P2(4)B(4)

be the Slater determinant for a closed shell containing four electrons. To
calculate the energy we may use (11.2-30) and (11.2-31) and for this purpose
it is convenient to define

© @

) @
lpa = Q0 ‘//b = q’lﬂa '//c = @0, I//d = 902.3 (112'34)
We then have
<‘/’al=7f0|‘/’a> = <Wb|3fo||/’b> = <(P1|=7fol(l’1> =1,
<'/’c|jfolwc> = <‘/’b|=’fo|‘/’d> = <§02|9f0|¢2> =1,
and the contribution to the energy from the one-electron integrals is

2, + I,). (11.2-35)
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The six possible Coulomb integrals are

2
<¢ (l)l//b(z) l//a(l)l//b(2)> <(P1(1)<P1(2) <P1(1)<P1(2)> =J(,1)
e2 )
<l//a(1)¢c(2) — l//a(l)!//c(2)>
<!//a( lﬁa(l)%(2)> 2
<(P1(1)(02(2) (01(1)<P2(2)> =J(1,2)
<!//b(1)l//c l//b(l)l//c(2)>
< l//b(l)!//a(2)>

2

0
and their contribution to the energy is

J(,1) + J(2,2) + 4J(1,2).

The orthogonality of the spin functions causes all but two of the six ex-
change integrals to vanish. The ones that remain are

ll/c(l)!l/a(2)> <¢2(1)¢2(2) <02(1)<Pz(2)> =J(2,2)

l//a(l)l//b(2)>

2
<¢a(1)¢c(2) ;e; %(1)%(2)> = <~//b(1)¢a(2)

2

(02(1)(P1(2)> = K(1,2)

<‘P1(1)<P2(2)

with a contribution of —2K(1,2) to the energy. The total energy is the sum
of the contributions from the three kinds of integrals:

E=2(I,+ 1I,)+ J(1,1) + J(2,2) + 4J(1,2) — 2K(1,2).

It is a simple matter to extend this formalism to a system of 2N electrons
in a closed shell configuration. The Slater determinant is

|| o @B e enba) o)
VENT |, GNYG2N) 9,2NYBEN) -~ ouN)N) onNIBEN)

(11.2-36)

11.2 MATRIX ELEMENTS—SPECIAL CASES 253

and the total energy may be written

N N
1[ E=2 kgl I + kZ, [2J(k 1) — Kk, I)] (11.2-37)

provided one sets

4
I(k k) = Kk k) = <<pk(1)<pk(2) ff—
12

¢k(1)<pk(2)> (11.2-38)

The sums in (11.2-37) are taken over N spatial orbitals which correspond
to 2N spin orbitals (or 2N electrons). It should also be noted that the relation
Jk, k) = K(k,k) is a necessary requlrement for the validity of the energy
expression (11.2-37) but is not true in general .

SR K(i.i)=o



