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Stark Effect 
Stark Effect: deals with the splitting of the energy levels of an 
atom in an electric field. 
Now let us apply the technique of time-independent perturbation 
theory to an atomic physics problem. This problem is, what 
happens when we apply a small electric field to a hydrogen atom. 
Classically, we know that applying an electric field causes the 
average position of the electron and proton to not coincide creating 
an electric dipole, P E∝ , which acts with the field to lower the 
energy of the atom, 2EEnergy −∝ .  
Note: For H-atom, the electrostatic potential energy is calculated as 
follows: 
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Quantum mechanically, our unperturbed system is the hydrogen atom model we have already 
solved. The perturbation is an electric field pointing in a specific direction; however, as we can 
define the co-ordinates of the atom to point in any direction we chose the electric field to be 
along the z axis without loss of generality. Thus, the perturbation term is given by 

ˆ cospH eEr eE Zθ= − = −  
Let us consider the effect of this perturbation on the ground state of the hydrogen atom given by 
the wavefunction: 
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The first order correction to the energy of this state is given by 
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This matrix element is zero. We can show this to be true because for every point included in the 
integral there is a twin point which is the opposite direction from the origin, i.e. the points given 
by r and r− . The wavefunction 0,0,1ψ is even parity, i.e. it is the same at these two positions, 
however, the perturbation term has the same magnitude but different sign. This means that the 
two contributions to the integral add to give zero and the whole integral is zero. i.e. the energy of 
the ground state is not perturbed. 
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The second order correction to the energy of this state is given by 
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It turns out that most of the matrix elements in the sum are zero, however, the matrix elements 
involving 0,1,nψ are non-zero. Even without knowing that the value of the sum, we can show that 
the energy is proportional to the magnitude of the electric field squared, and the contribution to 
the energy is negative, as expected from classical physics.  
 

Let us now consider the effect on the degenerate n = 2 states. Clearly, we are going to 
need degenerate perturbation theory, and the first thing we need to do is decide on the correct 
basis wavefunctions. The conventional wavefunctions are written: For simplicity we will use the 
state , m  
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We have the matrix: 
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with  ˆ=ij pH i H j . 
Note that: to calculate the integral: 

ˆ , , cos , ,= = =ik p rH i H k e r r r e I I Iθ ϕθ ϕ θ θ ϕE E  
we have to take into account the following procedure: 
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It turns out 

13 31 14 41 23 32 24 42 34 43 0= = = = = = = = = =H H H H H H H H H H  
2- With 'm m=  and  'l l= , one finds 
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The term 2
lmP  is even function of x , and hence the integrand is odd, which implies that 

                                                        1 1± Z 1 1 0± = . 
It turns out 
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3- In conclusion, the only matrix elements which are non zero are: 0,0 Z 1,0  and 
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Thus, the matrix representation of the perturbation for this set of degenerate states is  
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In this case the first order corrections to the energy of the states are  
 

3 /oea E Z− , 3 /oea E Z , 0, 0 
 

The shifts in energy calculated above are observed in experiments and are called the linear Stark 
shifts. The set of unperturbed states we require are  

( )2,0,0 2,1,0
1
2− = +ψ ψ ψ , ( )2,0,0 2,1,0

1
2+ = −ψ ψ ψ , 1,1,2ψ and 1,1,2 −ψ  

 

H.W. Are the functions ( )2,0,0 2,1,0
1
2± = ±ψ ψ ψ  eigen function of the operator 2L̂ ? zL̂ ? 
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Thus 
1- Stark linear phenomenon depends mainly on the splitting of different levels as a result of 

the impact of the external electric field. This splitting resulted from the special character 
of the Coulombic potential, and therefore, it applies only to the hydrogen atom. 

2- Levels split will not become an eigenfunction of the operator 2L̂  (or the parity operator), 
but still functions of ˆ

zL . This means that the simple perturbation has changed the form of 

Hamiltonian so that it is non-commute with 2L̂ . This is a result of that the electric field 
takes certain direction (in the direction z-axis presumably) and thus the system will not be 
the symmetric with any optional rotation, but will remain the same as rotation around the 
z-axis only and  therefore ˆ

zL will remain commute with total Hamiltonian.  
3- The H-atom in its first excited state behaves as though it has a permanent electric dipole 

moment 3 /oa e Z  that can be oriented in three different ways as in the following figure. It 
then follows that the three energy states correspond to parallel, antiparallel, and 
transverse orientations of this dipole with respect to the electric field. 

4- As shown in the figure, the states with 1= ±m  remain degenerate and so, degeneracy is 
partially lifted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure: Stark effect (splitting of the n = 2 level) in H-atom. E is the field strength of the applied electric field. 
 
In Summary: Due to Stark effect the total Hamiltonian is no longer invariant under rotation 
except around the field direction, i.e. z-axis.  is not a good quantum number. In the field, 
eigenfunctions of the atom are generally combinations (mixing) of the field free functions. The 
dipole matrix elements connected different states appears as combinations of matrix elements of 
field free states, same for life time. 
Amount of mixing depends on: 

1- The strength of the field perturbation. High electric field will produce ionization. 
2- The energy separation of the field free states. 
 
 
I- For perfectly degenerate states, the slightest electric field would produce a complete 

mixing. 
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II- In Hydrogen atoms, all substates (of given Q. N. n) are almost degenerate. They are 
separated only by fine structure and Lamb-shifts factors, but both factors decreases 
when n increases. 

III- Vanishingly small fields are able to produce considerable mixing in Hydrogen 
Rydberg states (with high value of n). 

IV- In atoms with several electrons, the absence of degeneracy strongly reduced the 
mixing. 

 
Quenching of the 2s-state 
 
Since  is not a good quantum number in the presence of an external electric field, it is clear that 
the selection rules concerning must be modified. In particular, because the operator 

ˆ =pH eE Z  has a non-vanishing matrix element between the 2s and 2Po states, these two states 

are ‘mixed’ by the perturbation ˆ
pH  with the result that the metastable 2s state is ‘contaminated’ 

by the unstable 2p state. Thus a radiative transition from the 2s state to the 1s state can be 
induced by an external electric field, so that the lifetime of the 2s state shortened by comparison 
with its value in the absence of an electric field. 
 

 
 
Figure Splitting of the n = 2 level of atomic hydrogen due to the linear Stark effect. The various possible transitions 
are shown; those with 0∆ =m corresponding π  lines and those with 1∆ = ±m to σ  lines. 

The 0∆ =m transitions are said to correspond to π  components, and the 1∆ = ±m  to σ  
components. 
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An electric field applied to the atom in the state 2s can induce a radiative transition to the 

state 1s. The probability of this transition for E ∼  300 V cm-1 is approximately equal to the 
probability of the allowed transition 2p 1s→ . 

In a strong electric field, when T << r, during the whole time of decay the states 2s0 and 
2p0 are populated roughly equally (independent of which state the atom was in at the initial 
moment t 0= ). Therefore, the probabilities of radiative transitions 2s 1s→ , 2p 1s→  in the 
presence of a strong electric field are the same. It is obvious that an electric field also violates the 
restrictions on other ns n 's→ transitions. 
 
H.W. Do the linear Stark effect for the n =3 level and show all the transition lines in the case of 
n=3 to n = 2.
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Discussion of Stark Effect in Ground State Hydrogen 
   First, let’s look at the size of this perturbation to the potential energy.  Taking the radius of the 
ground state atom to be the Bohr radius, the Coulomb potential energy is 
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(Do you remember that you showed that the potential energy is twice the total energy for a 1/r2 
force?  This is the “virial theorem”.)  Let’s pick a realistic electric field size of 10000 V/m.  This 
could be produced easily in the lab by applying a voltage difference of 100 V across a set of 
parallel plates separated by 1 cm.  With this value for the field, the maximum potential energy of 
the electron would be 
 e rε = × × = × ≈ ×− − − −( . )( )( . ) .16 10 10000 053 10 8 48 10 5 1019 10 26 7 C  V / m  m  J  eV  
This is approximately 50 million times smaller than the Coulomb potential energy!  This is 
indeed a small perturbation, perhaps so small that the perturbation is negligible?  We will see.   
A quick calculation shows that if the potential energy due to the field is to be comparable to the 
Coulomb potential energy, then the field has to be on the order of 500 billion Volts per meter 
(5 × 1011 V/m)!  Thus, we can say with some confidence that any electric field we can apply to 
the atom can be treated as a perturbation. 
 
   You will show in Problem [6.3] that the first order correction to the ground state energy is zero.  
This tells us that the perturbation to the energy is going to be small.  You will show in Problem 
[6.4] that the second order correction is 
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Note that the electric field lowers the energy of the electron since ∈2  is negative and the 
unperturbed energy is also negative (-13.6 eV).  Also note that the second order correction to the 
energy depends on the square of the field as we expect (since the Hamiltonian perturbation 
depends linearly on the field size).   
   Taking our field value of 10000 V/m from above, the energy is lowered by 
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This shift is undetectable!  What kind of shift is detectable?  Recall that the spin-orbit interaction 
produced an energy shift on the order of 10-4 eV.  This is detectable using optical spectroscopy 
and measuring the transition wavelengths between shifted energy levels.  The wavelength of a 
photon emitted in a transition is given by 

λ = hc E  
where E is the transition energy.  Differentiating both sides of this equation will tell us how a 
perturbation to the energy affects the wavelength: 

d hc
E

dEλ =
−

2  

For example, if the atom makes a transition from the n=2  state (E2 = -3.4 eV) to the ground state 
(E1 = -13.6 eV) , the transition energy in the absence of any perturbations is 10.2 eV.  If the 
transition energy is lowered by 10-4 eV, then the transition wavelength increases by 

    dλ =
−

− ≈−12400
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10 0 012
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This is about the limit of resolution in spectroscopy so that energy shifts smaller than 10-4 eV are 
just too small to detect. 
 
   Suppose we did just want to see the perturbation due to the Stark effect.  Solving (6.47) for the 
electric field necessary to give a second order correction of  ∈2  = -10-4 eV = -1.6 × 10-23 J gives 
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This is an extremely large field!  (Air experiences dielectric breakdown at about 3 × 106 V/m.)  
Wouldn’t this extremely large field exert a tremendous force on the electron and actually ionize 
the atom (i.e. strip the electron from the proton)?  No!  This electric field would exert a force of 
   F eε ε= = × × = ×− −( . )( ) .16 10 8 10 13 1019 8 10 C  N / C  N  
on the electron.  The Coulomb force holding the electron to the proton is 
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The Coulomb force is approximately 600 times stronger than the electric force, even with this 
extremely large field.  The atom will not ionize! 
 
   What can we say in summary about the Stark effect in ground state Hydrogen?  The effect is 
extremely small.  For it to be easily detected requires extremely large fields on the order of 
hundreds of millions of Volts per meter. 
 
   A final note of interest should be made between magnetic field effects and electric field effects 
on the Hydrogen atom.  Recall that magnetic field effects are readily observable.  The spin-orbit 
interaction produces a detectable energy splitting with an internal magnetic field produced by the 
orbiting electron that is approximately 1 Tesla.  An external field that is comparable to this or 
greater can produce larger energy shifts. 
 
   Why is the atom so sensitive to magnetic fields but not so sensitive to electric fields when it 
comes to energy perturbations?  Is it because the magnetic forces are typically much larger than 
the electric forces?  Consider the relative sizes of the electric and magnetic forces exerted by the 
fields.  The electric force depends only on the product of charge and the electric field. The 
magnetic force depends on the product of charge, magnetic field, and the speed of the electron.  
In the ground state, the average speed of the electron is ~ 2 2 106. ×  m/s.  For a magnetic field of 
B = 1 T, the magnetic force is on the order of 
  F evB TM = = × × ≈ ×− −( . )( . )( ) .16 10 2 2 10 1 35 1019 6 13 C  m / s  N  
This is roughly 370 times smaller than the electric force required to produce an energy shift 
comparable to the shift produced by the magnetic field. (Compare this force to the 1.3 × 10-10 N 
we calculated above.)   So the answer isn’t the size of the forces involved.  Then what does cause 
this difference? 
  The answer is electron spin!  The magnetic field interacts with the electron spin to produce 
these energy shifts.  Recall that we found the energy shifts by modeling the electron spinning on 
its axis as producing a magnetic dipole moment which interacts with the magnetic field.  The 
electric field has no interaction with the spin of the electron.  Thus, the electric field’s effect on 
energy is much less noticeable. 
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Hydrogen Atom Ground State in a E-field, the Stark Effect. 
We have solved the Hydrogen problem with the following Hamiltonian.  

 
Now we want to find the correction to that solution if an Electric field is applied to the atom. 
We choose the axes so that the Electric field is in the z direction. The perturbation is then.  

ˆ cospH eEr eE Zθ= − = −  
It is typically a small perturbation. For non-degenerate states, the first order correction to the 
energy is zero because the expectation value of z is an odd function.  
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We therefore need to calculate the second order correction. This involves a sum over all the 
other states.  
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We need to compute all the matrix elements of z between the ground state and the other 
Hydrogen states.  
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We can do the angular integral by converting thecosθ  term into a spherical harmonic.  
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Then we can just use the orthonormality of the spherical harmonics to do the angular integral, 
leaving us with a radial integral to do.  
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The radial part of the integral can be done with some work, yielding.  
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We put this back into the sum. The Kronecker deltas eliminate the sums over and m . We 
write the energy denominators in terms of the Bohr radius.  
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The first two terms of the sum get us pretty close to the right answer. We could have just done 
those radial integrals.  

Now we compute d , the electric dipole moment of the atom which is induced by the 
electric field.  

32 4(0.93)∂

∂

∈
= − = =od a αE E

E  

α  is the polarizability. The dipole moment is proportional to the Electric field, indicating that 
it is induced. The E field induces the dipole moment, then the dipole moment interacts with the E 
field causing a energy shift. This indicates why the energy shift is second order.  

3 34(0.93) 3.72= =o oa aα  
The exact is  

34.5=exact oaα  
 
  

 


