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Molecular Spectroscopy 
 

For molecules (e.g. diatomic), the total energy of molecule is a contribution of the following: 
1- ( )Translation kinetic energy, transE  FOR THE CENTER OF MASS 

2- ( )Excitation energy, excitE  for the electrons in the molecule 41 eV 10excitE K∆ ≈ ≈ . 

3- ( )Vibrational energy, vibE  for the electrons in the 3 110 eV to 10 eVvibE − −∆ ≈  

4- ( )Rotational energy, rotE  around the center of mass of the molecule 410 eVrotE −∆ ≈ . 

Potential Energy Curve between Bonding Atoms 
 
Notes about the potential energy curve 
 The equilibrium bond length is the distance where the 

electron overlap balances the nuclear repulsion. 
 At R = ∞, the energy of the system is the energy of the atoms 

themselves. 
  - The bonding of the atoms causes the system’s energy to 

decrease. 
 Once atoms are pushed closer than equilibrium bond length, 

nuclear repulsion causes potential energy of the system to 
increase. 

 
Morse Potential 
 
An excellent approximation of an actual potential energy curve is the Morse potential. 
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eV x D 1 e−= −  where 

1
2 2

e

a
2D

⎛ ⎞µω
= ⎜ ⎟
⎝ ⎠

 and De is the potential well depth. 

 
V(x)

x

harmonic (quadratic)

anharmonic (Morse)

D0
De

 
 

D0 – dissociation energy 

e 0
1D D
2

− = ω  – zero point energy 

 
 

 

E
ne

rg
y

Atomic Distance [R]

nuclear repulsion

Equilibrium bond length

electron overlap

zero interaction
       at R =   ∞



Prof. Dr. I. Nasser                  Atomic and molecular physics -551  (T-112)                        April 10, 2012 

Rotational_motion.doc 2

 
 

THE ELECTROMAGNETIC SPECTRUM 
Acronym Classification Frequency Range, f Wavelength 
THF Tremendously High Freq. 300–3000 GHz 1 mm – 100 µm 
EHF  Extremely High Freq. 

(Millimetric waves/Microwaves) 
30 300 GHz−  1 cm – 1 mm 

SHF  Super High Freq. 
(Centimetric waves/Microwaves) 

3 30 GHz−  10 – 1 cm 

UHF Ultra High Freq. (Radio frequency)
(Decimetric wave) 

300 3000 MHz−  1 m – 10 cm 

VHF Very High Freq. 
(Metric waves) 

30 300 MHz−  10 – 1 m 

HF High Freq. 
(Decametric waves) 

3 30 MHz−  100 – 10 m 

MF Medium Freq. 
(Hectometric waves) 

300 3000 kHz−  1 km – 100 m 

LF Low Freq. 
(Kilometric waves) 

30 300 kHz−  10 km – 1 km 

VLF Very Low Freq. 
(Myriametric waves) 

3 30 kHz−  100 – 10 km 

ULF Ultra Low Freq. 300 3000 Hz−  103 – 102 km 
SLF Super Low Freq. 30 300 Hz−  104 – 103 km 

ELF Extremely Low Frequency 3 30 Hz−  105 – 104 km 
TLF Tremendously Low Freq. 3 Hz≺  106 – 105 km 

 
 

Region of the electromagnetic spectrum 
region Frequency Range, 

( )Hzf  
Wavelength  

γ -ray 18 203 10 3 10× → ×  ? Energy changes involve the rearrangement of 
nuclear configuration. 

x -ray  16 183 10 3 10× → ×  ? Energy changes involving the inner electrons of 
an atom or molecule. 

Visible and 
ultra-violet 

14 163 10 3 10× → ×  ? To study electronic spectroscopy. 

Infra-red 12 143 10 3 10  × → ×  ? To study the vibrations of molecules and yield 
information concerning the stiffness or rigidity of 
chemical bond. 

Microwaves 10 123 10 3 10  × → ×  ? Investigation the rotation of molecules and yields 
moment of inertia and bond length, 

Radio 
frequency 

6 103 10 3 10  × → ×  1 cm 10 m → The energy change involved is that arising from 
the reversal of spin of a nucleus or electron. 
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The Harmonic Oscillator 
 
1. Classical description. 
 

A particle of mass m is subject to a restoring force Fx, which is proportional to its 
displacement from the origin (Hooke’s Law). 

 

kxF
dx

)x(dV
x −==−  

 
where k is the force constant.  If we take the zero of the potential energy V to be at the 
origin x = 0 and integrate, 

     2
2
1

x

0

x

0
kxxdxkdV)x(V =−== ∫∫  

Note that this potential energy function differs from that in the particle-in-the-box problem in that the 
walls do not rise steeply to infinity at some particular point in space (x = 0 and x = L), but instead 
approach infinity much more slowly. 
From Newton’s second law, 

kx
dt

xdmmaF
2

2

−===  

thus, 
2

2
2 ,                  d x k kx x

dt m m
= − = − =ω ω  

This second-order differential equation is just like that for the free particle, so solutions must be of the 
form 

[ ] [ ]( ) sin cosx t A t B tω ω= +  
where A and B are constants of integration.  If we assume that x = 0 at t = 0, then B = 0 and  

[ ]0( ) sinx t x tω=  

where 0x A= is the maximum displacement amplitude.  
Since this can also be written as 

),tπ2sin(x)tωsin(x)t(x 00 ν==  
we see that the position of the particle oscillates in a sinusoidal manner with frequency  

2 21 4 .
2 2

k k m
m
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π π

 

The energy of the classical oscillator is  
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    and is not quantized. 
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Quantum mechanical description. 
 

Following our prescription, we begin by writing down the classical energy   expression for the oscillator 

     2
2
x22 kx

2
1

m2
pkx

2
1vm

2
1VTE +=+=+=  

and then convert this to the quantum mechanical analog, the Hamiltonian operator Ĥ , by replacing each 
of the dynamical variables (px and x) by their operator equivalents, 

     xx̂x,
x

ip̂p xx =→
∂
∂

−=→  

This yields 

                2
2

22

kx
2
1

xm2
Ĥ +

∂
∂

−=  

We then use this form of Ĥ  in the time-independent Schrödinger equation 
ψEψĤ =  

 
yielding 

 

                ).x(ψE)x(ψkx
2
1)x(ψ

xm2
2

2

22

=+
∂
∂

−       (A) 

Eigenvalues     
    The energies (eigenvalues) of the one-dimensional harmonic has the from: 

  

 ( ) ( )n

1 1
2 2

, 0,1, 2,E n n h n= + = + = …ω ν  

Here  n is the vibrational quantum number. Converting to the spectroscopic units, m-1, we have, 

( )n
n

1
2

EE n
hc

= = + ν  

Here  n is called term value.. ν  is the vibrational frequency of the oscillator in wavenumbers, so its 

units is m-1. Zero-point energy in m-1 = 
1
2
ν . The selection rule for the harmonic oscillator under 

going vibrational changes is 1n∆ = ± .  
Vibrational energy changes will only give rise to an observable spectrum if the vibration can 

interact with radiation, i.e., if the vibration involves a change in the dipole moment of the molecule. 
Thus, vibrational spectra will be observable only in heteronuclear diatomic molecules (like HF, 
HCl,  HBr) since homonuclear molecules (like H2, N2 and O2) have no dipole moment. 
 
Example: Show that the vibrational absorption spectrum of a diatomic molecule in the harmonic 

oscillator approximation consists of just one line whose frequency is given by Eq. 1
2 2

k
m

ν = =
ω
π π

. 

Solution: From the Eq.: 

( ) ( )n

1 1
2 2

, 0,1, 2,E n n h n= + = + = …ω ν  

According to the selection rule, 1n∆ = + for absorption, the vibrational energy change for 
absorption is 

 

not zero.  New feature.
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( ) ( )n+1 n

1 1
2 2

1
2
h kE E E n h n h h

m
∆ = − = + + − + = =ν ν ν

π
 

Thus, the spectrum consists of a single line whose frequency is 
1

2obs

E k
h m
∆

= =ν
π

 

Using the last equation, the observed infrared frequency can yield the force constant k , which is a 

direct measure of the stiffness of the bond.  E⇒ ∆ =ν  
 

It means that all the vibrational lines obtained from harmonic oscillator are of the same frequency. The 
allowed vibrational energy levels and transitions between them for a diatomic molecule undergoing simple 
harmonic motion are shown in Fig. 23.8. 

 
 
 
Pure vibrational spectra are observed only in liquids. This is because interactions between neighboring 
molecules prevent their rotational motion. 
 
Example. in the near infra-red spectrum of HC1 molecule there is single intense band at 2885.9 cm-1. 
Assuming that it is due to the transition between vibrational levels, show that the force constant k is 480 
Nm-1. (Given :MH= 1.68x 10-27 kg). 

 

Now, 
1

2 2
k

ν = =
ω
π π µ

where k is the force constant and µ  is the reduced mass of the molecule. 

Therefore, 
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Example. The force constant of the bond in CO molecule is 187 Nm-1 . Calculate the frequency of 
vibration of the molecule and the spacing between its vibrational energy level in eV. Given that reduced 
mass of CO = 1.14 x 10-26 kg, h = 6.6 x 10-34 Js and l eV 1.60 x 10-19 J. 
Solution: The frequency of vibration of the molecule is 

 
 
Unlike the corresponding classical result, we find that the quantum mechanical energy is quantized, in 
units of ω , where ω is the classical frequency ω2 = k/m.  We also find that the lowest state, with 

0n = , does not have zero energy but instead has E = ω /2, the so-called zero point energy.  We can 
summarize these results in the form of an energy level diagram 
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Boltzmann Distribution 
 
 As the numbers of molecules (or atoms) get larger, that is 1023, the most probable distribution 
for a given amount of macroscopic energy among microscopic energy states is given by the 
Boltzmann distribution. 
 

i

j

E
kT

i
E
kT

j

n e
N

e

−

−
=

∑
 

 
       Note:  R = kNA 
 
Let us examine how the energy of 106 HCl -molecules is distributed among the different vibrational 
states at T = 298 K, where 12991cm−ν = . 
 

( ) ( )( )( )( )
( )( )

34 10 1
n

20

1 1
2 2

1
2

E hc n 6.626 10 J s 2.997 10 cm / s 2991cm n

5.617 10 J n

− −

−

= ν + = × ⋅ × +

= × +
 

( )( )23 21kT 1.381 10 J / K 298 K 4.118 10 J− −= × = ×  
 

n  
nE  nE

kT  
nE

kTe
−

 
0 2.802 × 10-20 J 6.82 1.09 × 10-3 
1 8.425 × 10-20 J 20.46 1.31 × 10-9 
2 1.404 × 10-19 J 34.10 1.55 × 10-15 
3 1.966 × 10-19 J 47.74 1.85 × 10-21 
4 2.528 × 10-19 J 61.38 2.20 × 10-27 

 
6.82 3

6 60 0
06 6.82 20.46 34.10 47.74 61.38 3

n n e 1.09 10 1 n 10 1 10
N 10 e e e e e 1.09 10

− −

− − − − − −

×
= = = = ⇒ = ⋅ =

+ + + + ×
 

20.46 9
6 6 61 1

16 6.82 20.46 34.10 47.74 61.38 3

n n e 1.31 10 1.21 10 n 10 1.21 10 1
N 10 e e e e e 1.09 10

− −
− −

− − − − − −

×
= = = = × ⇒ = ⋅ × =

+ + + + ×
 

 
The vibrational energy is large compared to the thermal energy; therefore, approximately 999,999 
molecules out of a million are in the ground vibrational state at 298 K and 1 molecule is in the first 
excited state. 
Let us consider what happens to the energy distribution at a higher temperature such as 2000 K? 
 

( )( )23 20kT 1.381 10 J / K 2000K 2.762 10 J− −= × = ×  
 

ni – number of molecules in the ith energy state. 
N – total number of molecules. 
Ei – energy of the ith energy state. 
k – Boltzmann’s constant:  1.38 × 10-23 J/K 
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n  nE
kT

 
n

n

E
kT
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kT

en 10
e

−

−

ν

=

∑

0 1.02 868998 
1 3.04 113843 
2 5.08 14911 
3 7.11 1950 
4 9.15 260 
5 11.17 34 
6 13.21 4 

 
Conclusion: Most diatomic molecules are in the ground vibrational state ( )0n =  at room 

temperature. 
 
Role of Degeneracy in the Boltzmann Distribution 
 
The Boltzmann distribution includes all degenerate states as equally probable as well.  Therefore the 
more precise formulation of the Boltzmann distribution is 
 

i

j

E
kT

i i
E
kT

j
j

n g e
N

g e

−

−
=

∑
,                                      gi – degeneracy of the ith energy state.
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Rotational motion of rigid linear molecules 
Classical description. 
A rigid rotor is a dumbbell-shaped object consisting of two masses, m1 and m2, separated by a fixed 
distance r. 

   
  
 
 
 
 
In general, the rotational energy of any three-dimensional object can be written as 

  2
zz

2
yy

2
xxrot ωI

2
1ωI

2
1ωI

2
1E ++=  

Here, ωx, etc., are the angular velocities of rotation and Ix, etc., are the moments of inertia, each 
referred to the principal axes of rotation. 
For our dumbbell, if we assume that m1 and m2 are point masses, then 

  

      
2 2

1 1 2 2

, 0

, 0
x y z

x y z

x

I I I I

I m r m r

= = =

= = =

= +

ω ω ω ω

 

If the origin of the coordinate system is located at the center of mass (CM), 
use the relations: 1 1 2 2 1 2,m r m r r r r= = + , we can write: 

        

2 1
1 2

1 2 1 2

21 2 1 2

1 2 1 2

,

, (reduced mass)

m mr r r r
m m m m

m m m mI r r
m m m m

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
⎛ ⎞

= = =⎜ ⎟+ +⎝ ⎠
µ µ

 

 
From this we see that the rotational motion of our “dumbbell” can also be described as the rotational 
motion of a mass µ, which is located at a distance 0R  from the center of a spherical 
polar coordinate system.  So 

( )2 2 2 2 2 2
1 1 2 2

2 2

2 2 2 2 22 1
1 2 0 0

1 2 1 2

1 1
2 2

1 1
2 2

rot x x y yE I I I m r m r

m mm m R R I
m m m m

= + = = +

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + = =⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

ω ω ω ω

ω µ ω ω

 

     ⇒   particle on a ring, on a sphere. 
Since L I= ω , where L  is the angular momentum of the object, we can also write 

2 2

2 .
2 2rot

L L
E

r I
= =

µ  

m1 m2
r
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Quantum mechanical description. 
To describe the system by QM, we need the operator equivalent of 2L .  This is, in polar 
coordinates  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
2

2

22

2
22

φθsin
1

θθsin
θcos

θ
L̂  

So, 22 rµ2/L̂Ĥ =  is the QM analog of the classical energy.   

( )2 2
, ,

ˆ 1 ,                0,1,2J m J mL Y J J Y J= + =  
2

( 1)
2JE J J

I
= +  

With the degeneracy 2 1Jg J= +  
When we consider both rotations and vibrations simultaneously, we take advantage of the fact that 
these transitions occur on different timescales.  Typically, a molecular vibration takes on the order 
of 1410  s− .  A molecular rotation is normally much slower, taking on the order of 910  s−  or 1010  s− .  
Hence, as a molecule rotates one revolution, it vibrates many, many times. Since the vibrational 
energies are large compared with the rotational energies, the appropriate energy level diagram is: 
 

   

~~

J = 0
J = 1
J = 2

J = 3

J = 0
J = 1
J = 2

J = 3

E

v = 0

v = 1

 
In wave-numbers, the energy, ( )Jν , and the rotational constant, B~ , are related by the equation:  

( ) ( 1)J B J J= +ν  cm-1     and         28
hB
cI

=
π

cm-1    

Proof: 
2

( 1) ,
2JE J J

I
= + but 

cE h h hc= = =ν ν
λ

 

2

2

1 ( 1) ( 1) ( 1)
2 8

J
J

E hE hc J J J J BJ J
hc hc I cI

= ⇒ = = + = + = +ν ν
π

 

B for diatomic molecules are in the order 1 cm-1.   
Rotational spectra are always obtained in absorption. Hence for a transition from some initial state 
of quantum number J to the next higher state of quantum number J + 1, the wave number of the 
absorbed photon is: 

1 ( 1)( 2) ( 1) 2 ( 1)J J B J J B J J B J→ + = + + − + = +ν  

Figure 4 
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The energy level diagram is 

 

               
Notice that: 

1- the levels are not equally spaced, and that the lowest level has zero energy (unlike HO). By 
calculating B , we can calculate I , and then the distance oR  between the nuclei can be 
calculated. This gives the length of the chemical bond between the atoms.. 

2- Rotational transitions occur only in those molecules which possess a permanent electric 
dipole moment. For this reason nonpolar diatomic molecules such as H2 and symmetric 
polyatomic molecules such as CO2 and CH4 do not exhibit rotational spectra. 

3- The selection rule for rotational transitions is 1J∆ = ± . 
 
Example. The lines in the pure rotational spectrum of HC1 are spaced as 20.8 x 102 1m− . Calculate 
the moment of inertia and the internuclear distance. Mass of proton = 1.67 x l0-27 kg ; mass of 
chlorine = 58.5 x 10-27 kg. 
Sol. The reduced mass is defined as 
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Example: In the CO molecule the wavenumber difference between the successive absorption lines 
in the pure rotational spectrum is 1384 m− . Calculate the moment of inertia of the molecule and the 
equilibrium bond length of the molecule. Masses of the C12 and O16 atoms are respectively 1.99 x 
10-26 kg and 2.66 x 10-26 kg. 
Answer: Here  

1384 m
2 Ic

−∆ = =ν
π

 

 
 

Intensity of Rotational Transitions 
Degeneracy is important when partitioning the rotational energy of sample of molecules.  
Remember that each rotational state J can have an M value that ranges from J, …, -J.  Thus each 
rotational state J has 2J +1 M values; thus the degeneracy for rotational energy levels is 2J +1. 
The intensity of a transition in the absorption (microwave) or Rotational Raman spectrum is 
proportional to the number of molecules in the initial state (J’’); i.e. Int. ∝ NJ 
Boltzmann Distribution: 

( 1)

(2 1)
JE hcBJ J

kT kT
J J JN g e N J e

+
− −

∝ ⇒ ∝ +  
 

EXAMPLE 1: Calculate E∆  for radiation of wave number, 11.00 cmν −= . To what type of 
molecular process will this radiation correspond? 
Solution: Recall that wave number is given by reciprocal wavelength or that 

 
According table (1), this value of energy corresponds to rotational transition. 
 
EXAMPLE 2: Show that the rotational absorption predicted by the rigid rotator model consists of a 
series of equally spaced lines in the microwave region. 
Solution: The energy levels are given by Eq.  
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2

( 1)
2JE J J

I
= + . 

According to the selection rule for rotational transitions,  1J∆ =  for absorption. The energy change 
for a rotational transition is: 

2 2 2

1 ( 1)( 2) ( 1) ( 1)
2 2J JE E E J J J J J

I I I+

⎧ ⎫
∆ = − = + + − + = +⎨ ⎬

⎩ ⎭
 

and 

2 ( 1),             0,1, 2,
4

E h J J
h I
∆

= = + =ν
π

 

 
According table (1), these lines occur in the microwave region. 
 

h = 6.63x10-34 J•s 
c = 3.00x108 m/s 
c = 3.00x1010 cm/s 
NA = 6.02x1023 mol-1 
k = 1.38x10-23 J/K 
1 amu = 1.66x10-27 kg

 
Example 3:  The HCl bond length is 0.127 nm. Calculate the spacing between lines in the 
rotational absorption spectrum of HCl, in cm-1. 
Answer: 

( )( ) 27
271 35 1.66 100.972 0.972 1.61 10

1 35 1
H Cl

H Cl

amu amum m x kgamu amu x kg
m m amu amu amu

−
−µ = = = = ⋅ =

+ +
 

( )( )22 27 9 47 21.61 10 0.127 10 2.60 10I r x kg x m x kg m− − −= µ = = ⋅  

( ) ( )( )
34

1 1
22 47 2 10

6.63 10 10.78 10.8
8 8 3.14 2.60 10 3.00 10 /

h x J sB cm cm
Ic x kg m x cm s

−
− −

−

⋅
= = = ≈

π ⋅
 

As discussed above, microwave absorption lines occur at 2B, 4B, 6B, ... Therefore, the spacing is 
2B 

1Spacing 2 2 10.8 21.6 cmB −= = × =  
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Example 4:  calculate the ratio of intensities 3 4

1 2

I
I

→

→

 in the above example at 25o C, where 

110.8 cmB −=  
Answer: 
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Summary 
The Harmonic Oscillator 

2
2

2 ,                  d x k kx x
dt m m

= − = − =ω ω  

2 21 4 .
2 2

k k m
m

ν = = ⇒ = ν
ω π
π π

 

2
2

22

kx
2
1

xm2
Ĥ +

∂
∂

−=  

( ) ( )n

1 1
2 2

, 0,1, 2,E n n h n= + = + = …ω ν              1n∆ = ±  

( ) ( )n+1 n

1 1
2 2

1
2
h kE E E n h n h h

m
∆ = − = + + − + = =ν ν ν

π
 

1
2obs

E k
h m
∆

= =ν
π

            E⇒ ∆ =ν  

Boltzmann Distribution:    
i

j

E
kT

i i
E
kT

j
j

n g e
N

g e

−

−
=

∑
,             gi – degeneracy of the ith energy state,  ( ) ( )23kT 1.381 10 J / K T K−= ×  

Rotational motion of rigid linear molecules 
2 2

2 2 2 1 2
0 2

1 2

1 1 , , (reduced mass)
2 2 2 2rot rot

L L m mE R I E
r I m m

= = = = =
+

µ ω ω µ
µ

 

2

( 1)
2JE J J

I
= +  

( ) ( 1)J B J J= +ν  cm-1     and         28
hB
cI

=
π

cm-1  

1 ( 1)( 2) ( 1) 2 ( 1)J J B J J B J J B J→ + = + + − + = +ν  
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Rotational Transitions Accompany Vibrational Transitions 
Within the rigid rotator-harmonic oscillator approximation, the rotational and vibrational 

energy of a diatomic molecule is: 

,
1
2

0,1,2,
( ) ( 1)           

0,1,2,vib rot o

n
E n h hcBJ J

J
=

= + + +
=

ν  

 
Figure 10-2. An energy diagram showing the rotational levels associated with each vibrational state for a diatomic 
molecule. The lower rotational levels are too closely spaced to be shown. 

 

where the rotational constant 
4

B
Ic

=
π

. Typical values of the spacing between rotational 

levels are around 10-23 J molecule-1 (cf. Table 10-1) and of those of vibrational levels are around  
10-21 J molecule-1 (cf. Table 10-1). This result is shown schematically in Figure 10-2. When a 
molecule absorbs infrared radiation, the vibrational transition is accompanied by a rotational 
transition. The selection rules for absorption of infrared radiation are: 

1
1

n
J

∆ = +
∆ = ±

 

The frequency associated with the absorption is: 
[ ]'( ' 1) ( 1)obs o cB J J J J= + + − +ν ν  

 
Where 'J  can be either ( 1)J +  or ( 1)J − . If ' 1j J= + , then 

( 1) 2 ( 1),                      0,1,2, R - branchobs oJ cB J J∆ = + = + + =ν ν    (A) 
If ' 1J J= −  

( 1) 2 ,                              1,2,3, P - branchobs oJ cBJ J∆ = − = − =ν ν     (B) 
 
In both Eqs. (A) and (B), J  is the initial rotational quantum number. Typically, 1110  HzB ≈ and 

1310  Hzo ≈ν , and so the spectrum predicted by Eqs. (A) and (B) typically contains lines at 
1310  Hz  ± integral multiples of 1110  Hz . Notice that there is no line at oν . The rotational-

vibrational spectrum of HBr(g) is shown in Figure 10-3. The gap centered around 2560 cm-1 
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corresponds to the missing line at oν . On each side of the gap is a series of lines whose spacing is 
about 10 cm-1. The series toward the high-frequency side is called the R branch and is due to 
rotational transitions with 1J∆ = + . The series toward the low frequencies is called the P branch 
and is due to rotational transitions with 1J∆ = − . 
, or 2c B  = 3.82 cm-1 (cf. Figure 10-3 for HBr). 

 
Figure 10-3: The vibration-rotation spectrum of the 0  1 vibrational transition of HBr. The R- and P- branches are 
indicated in the figure. 
 

 
The vibration-rotation spectrum will consist of lines at: 

2 ,                 1, 2,3,o c j B jν ± =  

There will be no line at oν  and the separation of the lines in the P and R branches will be 2c B = 

1.15 x 1011 s -1 or 2 B = 3.82  cm -1 (See the above figure). 
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If we compare the results of Example 10-6 to experimental data, or look closely at Figure 
10-3, we see that there are several features in the vibration-rotation spectrum that we are not able to 
explain. For examples: 
1- The intensities, or heights, of the lines in the P and R branches show a definite pattern and the 

spacing of the lines is not equal.  
2- The lines in the R branch are more closely spaced with increasing frequency and that the lines 

of the P branch become further apart with decreasing frequency, i.e. the spacing between  the 
lines is not equal.  

 
Comments: Using Boltzmann distribution one can explain the following: 
 

1- most diatomic molecules are in the 0n =  vibrational state at room temperature. 
2- the intensities of the lines in the P and R branches in a vibration-rotation spectrum. 

 
The Intensities of the Lines in the P and R Branches in a Vibration-Rotation Spectrum Are 
Explained By a Rotational Boltzmann Distribution 
 
If we assume that the intensities of the rotational lines in a 
vibration- rotation spectrum are proportional to the fraction 
of molecules in the rotational level from which the 
transition occurs, then we can use the Boltzmann 
distribution of rotational energies to explain the observed 
intensities. We cannot use Eq. 10-22 directly because the 
rotational energy levels are (2J + 1)-fold 
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Non-Rigid Rotator 
On the wavenumber scale, the frequency difference between two successive lines in the pure 

rotational spectrum of a diatomic molecule is given by: 

2 Ic
∆ =ν

π
 

The rotational spectrum can be recorded. The absorption lines are equi-spaced. The separation 
between the adjacent lines is identified as 2B . 

2
2 4

B B
Ic Ic

∆ = = ⇒ =ν
π π

 

By measuring∆ν , the rotational constant B  can be calculated. From this, the moment of inertia of 
the molecule I can be calculated. Knowing I , one can calculate the reduced mass µ  of the 
molecule and oR  the bond length. 

The following table lists some of the observed lines in the rotational spectrum 35H Cl. The 
differences listed in the third column clearly show that the lines are not exactly equally spaced as 
the rigid rotator approximation predicts. 

 
Experimental investigations have shown that the successive lines in the far infra-red 

spectrum are not evenly spaced, but the frequency separation decrease slightly with increasing the 
value of J (Larger speed of rotation). It shows that the bond length oR increases with J. Therefore, 
our assumption that the molecule is a rigid rotator is false. In fact, all bonds are elastic to some 
extent. The more quickly a diatomic molecule rotates, the greater is the centrifugal force tending to 
move the atoms apart. 
Now we discuss the consequences of the change in bond length with J. 

I- When a bond is elastic, it will stretch and compress periodically with a certain functional 
frequency dependent upon the masses of the atoms and the elasticity (or force constant k) of 
the bond. This means that the molecule may have vibrational energy. If the vibrational motion 
is simple harmonic, the force constant k is given by: 

                                 2 2 24k c= π ω µ                            (1)  
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Here,ω  is the vibration frequency (in m-1). µ  is the reduced mass of the molecule. The 
variation of B with J is determined by the force constant, i.e., the weaker the bond, more 
readily will it distort under centrifugal forces. 

II- The second consequence of elasticity is that the quantities r and B vary during a vibration. 
 

Energy Levels 
Consider a single particle of mass µ  rotating about a fixed point with an angular velocity, ω . Let 
the particle be at a distance oR  from the fixed point when there is no rotation. Let this length 
increase to R , when the particle rotates. 

Centrifugal force during rotation = 2Rµ ω . 

Restoring force due to bond stretching (Hook’s law) = ( )ok R R−  
The above two forces balance each other at any instant of rotation. 

( ) ( )
2

2
o

o
kRR k R R R

k
µ ω = − ⇒ =

−µω  

This gives the distorted bond length. 
Total energy of the rotating system = K. E. + P. E 

( )
2 2 4 2 4

22 2
2 2

1 1 1 1
2 2 2 2 2 2o

R L LE I k R R I
k I I kR

µ ω
⇒ = ω + − = ω + = + . 

Where we used: 2L I R= ω= µ ω . The quantum restriction that the angular momentum Iω  be 

quantized according to ( 1)J J + will convert this classical result to a quantum-mechanical result: 

( 1)L J J= +  . The correct allowed energies are, 
2 4

2 2
2 2( 1) ( 1)

2 2JE J J J J
I I kR

= + + +  

Using: 

Important note: 
( )

( ) 22 2 2 2 4

2 2 2 2 4 2 2 82

1 /1 1 2 1 21 1o

o o o o o

kkR L LR
R R R k k R kR k Rk

⎡ ⎤− µω ⎡ ⎤⎡ ⎤µω µω⎣ ⎦= ⇒ = = − + = − +⎢ ⎥⎢ ⎥ µ µ−µω ⎣ ⎦ ⎣ ⎦
 

Then 
2 4

2 2
2 2( 1) ( 1) ,                     

2 2J o o
o o o

E J J J J I R
I kI R

= + − + + = µ  

2 2( 1) ( 1)J
J

EE BJ J DJ J
hc

= = + − +  

In the last Eq. , the first term is of major importance. The second is a minor term. The quantity D  
is called the centrifugal distortion constant, D B<< .   

H.W. Show that 2
4 1,

2
B kD

c
= =ν

π µν
. 

H.W. Check the following: 
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Fig. 23.5 shows the lowering of rotational 1evels when passing from the rigid to the non-rigid 
diatomic molecule. The difference between the energy levels increases with increasing value of J. 
The rotational absorption spectrum is produced due to molecular transition from the state J to 
the state (J+ 1). The selection rule is 1J∆ = + . 

 
 

Thus, we see that the spectrum of a non-rigid diatomic molecule is similar to that of the rigid 
molecule except that each line is displaced slightly to low frequency (Fig. 23.6). 
We note from Eq. (8) that the lines are no longer exactly equidistant but their separation decreases 
slightly with increasing J. The effect, however, is small owing to the smallness of D as compared to 
B. 
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MOLECULAR SPECTRA 
Determination of Force Constant from Rotational Spectrum 
By making observations on a number of lines in the rotation spectrum of a molecule, and by curve 
fitting method, the values of B and D are found out. Once D is known, the J values of lines in the 
observed spectrum can be determined. Further, knowing B and D, the angular frequency of 
vibration of the rotating molecule can be calculated using the relation 

 
For hydrogen fluoride, the force constant is 960 Nm-1 which indicates that H-F is a relatively strong 
bond. 
Example:  HC1 molecule has a rotational constant B value of 1059.3 m-1 and a centrifugal 
constant D of 5.3 x 10-2 m-1. Estimate the vibrational frequency and force constant of the molecule. 
 

 
 

 
 



Prof. Dr. I. Nasser                  Atomic and molecular physics -551  (T-112)                        April 10, 2012 

Rotational_motion.doc 24

 
 
 
 

2

2( 1) ( 1),               
2 8

J
J

E hE J J BJ J B
I hc cI

ν
π

= + ⇒ = = + =  

1
1
2

1( )
2n n n obs

k kE n h E E E h
m m+= + ⇒ ∆ = − = = ⇒ =ν ν ν

π
 

The rotational and vibrational energy of a diatomic molecule is given by: 
 

,
1
2

0,1,2,
( ) ( 1)           

0,1,2,vib rot o

n
E n h hc BJ J

J
ν

=
= + + +

=
 

 

 
 
 
 
 


