One-electron system

The Hamiltonian

$$
H_o \Psi_{total} = \left(\frac{p^2}{2\mu} - \frac{Z}{r}\right) \Psi_{total} = E \Psi_{total}
$$

where the eigen function:

 $\Psi_{total} \equiv R_{n\ell}(r) Y_{\ell,m}(\theta,\varphi) \chi_{+}$

has the uncoupled wave function representation $|\ell, m_{\ell}\rangle |s, m_{s}\rangle = |\ell, m_{\ell}, s, m_{s}\rangle$ which identify the orbital angular momentum, ℓ , and spin, *s*, parts of the wave function. m_{ℓ} is the projection quantum number associated with ℓ and m_s is the projection quantum number associated with *s* satisfies the relations:

$$
\langle \ell', m_{\ell}^{\dagger}, s^{\dagger}, m_{s}^{\dagger} | \hat{L}^{2} | \ell, m_{\ell}, s, m_{s} \rangle = \ell(\ell+1) \delta_{\ell\ell} \delta_{ss} \delta_{m_{\ell}m_{\ell}} \delta_{m_{s}m_{s}^{\dagger}}
$$

$$
\langle \ell', m_{\ell}^{\dagger}, s^{\dagger}, m_{s}^{\dagger} | \hat{L}_{z} | \ell, m_{\ell}, s, m_{s} \rangle = m_{\ell} \delta_{\ell\ell} \delta_{ss} \delta_{m_{\ell}m_{\ell}} \delta_{m_{s}m_{s}^{\dagger}}
$$

$$
\langle \ell', m_{\ell}^{\dagger}, s^{\dagger}, m_{s}^{\dagger} | \hat{S}^{2} | \ell, m_{\ell}, s, m_{s} \rangle = s(s+1) \delta_{\ell\ell} \delta_{ss} \delta_{m_{\ell}m_{\ell}} \delta_{m_{s}m_{s}^{\dagger}}
$$

$$
\langle \ell', m_{\ell}^{\dagger}, s^{\dagger}, m_{s}^{\dagger} | \hat{S}_{z} | \ell, m_{\ell}, s, m_{s} \rangle = m_{s} \delta_{\ell\ell} \delta_{ss} \delta_{m_{\ell}m_{\ell}} \delta_{m_{s}m_{s}^{\dagger}}
$$

Note: the quantum numbers $|\ell, m_\ell, s, m_s\rangle = |\ell, m_\ell\rangle|s, m_s\rangle$ diagonalize the Hamiltonian H_0 and they are called "good quantum numbers".

H.W. For the Hamiltonian H_0 , examine the following relations:

$$
\begin{bmatrix} \hat{H}_o, \hat{L}^2 \end{bmatrix} = \begin{bmatrix} \hat{H}_o, \hat{S}^2 \end{bmatrix} = \begin{bmatrix} \hat{H}_o, \hat{L}_z \end{bmatrix} = \begin{bmatrix} \hat{H}_o, \hat{S}_z \end{bmatrix} = 0
$$

$$
\begin{bmatrix} \hat{S}^2, \hat{L}^2 \end{bmatrix} = \begin{bmatrix} \hat{L}_z, \hat{L}^2 \end{bmatrix} = \begin{bmatrix} \hat{L}^2, \hat{S}_z \end{bmatrix} = \begin{bmatrix} \hat{L}_z, \hat{S}_z \end{bmatrix} = \begin{bmatrix} \hat{S}^2, \hat{L}_z \end{bmatrix} = \begin{bmatrix} \hat{S}^2, \hat{S}_z \end{bmatrix} = 0
$$

Also, the wave function $| \ell, s, j, m_j \rangle$ in LSJ-coupling has similar relations:

$$
\langle \ell', s', j', m_j | \hat{L}^2 | \ell, s, j, m_j \rangle = \ell(\ell+1) \delta_{\ell \ell'} \delta_{ss'} \delta_{jj'} \delta_{m_j m_j'}
$$

$$
\langle \ell', s', j', m_j | \hat{S}^2 | \ell, s, j, m_j \rangle = s(s+1) \delta_{\ell \ell'} \delta_{ss'} \delta_{jj'} \delta_{m_j m_j'}
$$

$$
\langle \ell', s', j', m_j | \hat{J}^2 | \ell, s, j, m_j \rangle = j(j+1) \delta_{\ell \ell'} \delta_{ss'} \delta_{jj'} \delta_{m_j m_j'}
$$

$$
\langle \ell', s', j', m_j | \hat{J}_z | \ell, s, j, m_j \rangle = m_j \delta_{\ell \ell'} \delta_{ss'} \delta_{jj'} \delta_{m_j m_j'}
$$

In which $\vec{J} = \vec{L} + \vec{S}$, and

$$
\hat{J}^2 = \hat{J}_x^2 + \hat{J}_y^2 + \hat{J}_z^2 = \hat{L}^2 + \hat{S}^2 + 2\hat{L}\hat{S} = \hat{L}^2 + \hat{S}^2 + 2\hat{L}_z\hat{S}_z + \hat{L}_+\hat{S}_- + \hat{L}_-\hat{S}_+ \,,
$$

Note that (ℓ, s, j, m_j) are not eigenfunctions of \hat{L}_z or \hat{S}_z . (ℓ, s, j, m_j) are called "coupled" representation".

H.W. For the Hamiltonian H_0 , examine the following relations:

$$
\begin{aligned}\n\left[\hat{L}^2, \hat{S}^2\right] &= \left[\hat{L}^2, \hat{J}^2\right] = \left[\hat{L}^2, \hat{J}_z\right] = \left[\hat{S}^2, \hat{J}^2\right] = \left[\hat{S}^2, \hat{J}_z\right] = \left[\hat{J}^2, \hat{J}_z\right] = 0 \\
\left[\hat{H}_o, \hat{L}^2\right] &= \left[\hat{H}_o, \hat{S}^2\right] = \left[\hat{H}_o, \hat{J}^2\right] = \left[\hat{H}_o, \hat{J}_z\right] = 0\n\end{aligned}
$$

--

Collected formulae:

$$
\hat{L}_y = (\hat{L}_+ - \hat{L}_-) / 2i, \quad \hat{L}_x = (\hat{L}_+ + \hat{L}_-) / 2
$$
\n
$$
\hat{L}_- \hat{L}_+ = \hat{L}^2 - \hat{L}_z^2 - \hat{L}_z, \quad \hat{L}_+ \hat{L}_- = \hat{L}^2 - \hat{L}_z^2 + \hat{L}_z
$$
\n
$$
\hat{L}_\pm |l, m\rangle = \sqrt{l(l+1) - m(m \pm 1)} |l, m \pm 1\rangle
$$
\n
$$
\hat{L}_\pm \equiv \hat{L}_x \pm i\hat{L}_y = \pm e^{\pm i\varphi} \left[\frac{\partial}{\partial \theta} \pm i \frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \phi} \right]
$$
\n
$$
\hat{L}_z = -i \frac{\partial}{\partial \phi}, \quad \hat{L}^2 = -\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]
$$

$$
\hat{J}_{\pm} = \hat{J}_{x} \pm i\hat{J}_{y}
$$
\n
$$
\hat{J}^{2} = \hat{J}_{x}^{2} + \hat{J}_{y}^{2} + \hat{J}_{z}^{2} = \hat{L}^{2} + \hat{S}^{2} + 2\hat{L}\hat{S} = \hat{L}^{2} + \hat{S}^{2} + 2\hat{L}_{z}\hat{S}_{z} + \hat{L}_{+}\hat{S}_{-} + \hat{L}_{-}\hat{S}_{+}
$$
\n
$$
\begin{bmatrix}\n\hat{J}_{x}, \hat{J}_{y}\n\end{bmatrix} = i\hat{J}_{z}, \quad\n\begin{bmatrix}\n\hat{J}_{y}, \hat{J}_{z}\n\end{bmatrix} = i\hat{J}_{x}, \quad\n\begin{bmatrix}\n\hat{J}_{z}, \hat{J}_{x}\n\end{bmatrix} = i\hat{J}_{y} \Rightarrow \hat{J} \times \hat{J} = i\hat{J}
$$
\n
$$
\hat{J}^{2} \mid j, m_{j} \geq j \ (j+1) \mid j, m_{j} \geq \hat{J}_{z} \mid j, m_{j} \geq m_{j}^{2} \mid j, m_{j} \geq \hat{J}_{z} \mid j, m_{j} \geq 0
$$
\n
$$
\hat{J}_{\pm} \mid j, m_{j} \geq = \sqrt{j(j+1) - m_{j} (m_{j} \pm 1)} \mid j, m_{j} \pm 1 \geq \hat{J}_{z}, \quad\n\begin{bmatrix}\n\hat{J}_{z}, \hat{J}_{z}\n\end{bmatrix} = -\hat{J}_{-}, \quad\n\begin{bmatrix}\n\hat{J}_{z}, \hat{J}_{+}\n\end{bmatrix} = \hat{J}_{+}
$$
\n
$$
\begin{bmatrix}\n\hat{J}^{2}, \hat{J}_{+}\n\end{bmatrix} = \begin{bmatrix}\n\hat{J}^{2}, \hat{J}_{x}\n\end{bmatrix} = \begin{bmatrix}\n\hat{J}^{2}, \hat{J}_{y}\n\end{bmatrix} = \begin{bmatrix}\n\hat{J}^{2}, \hat{J}_{z}\n\
$$

H.W. For the following Hamiltonian:

$$
H = H_0 + H_{so} = -\frac{\nabla^2}{2m} - \frac{Z}{r} + \zeta(r) \vec{L} \cdot \vec{S}, \qquad \zeta(r) = \frac{Z \hbar^2 e^2}{2m^2 c^2} \frac{1}{r^3},
$$

Examine the following relations:

$$
\begin{aligned}\n\left[\hat{S}^2, \hat{L}^2\right] &= \left[\hat{L}_z, \hat{L}^2\right] = \left[\hat{L}^2, \hat{S}_z\right] = \left[\hat{L}_z, \hat{S}_z\right] = \left[\hat{S}^2, \hat{L}_z\right] = \left[\hat{S}^2, \hat{S}_z\right] = 0 \\
\left[\vec{L}\cdot\vec{S}, L^2\right] &= \left[\vec{L}\cdot\vec{S}, S^2\right] = \left[\vec{L}\cdot\vec{S}, J^2\right] = \left[\vec{L}\cdot\vec{S}, J_z\right] = 0 \\
\text{But } \left[\vec{L}\cdot\vec{S}, L_z\right] &\neq 0, \quad \left[\vec{L}\cdot\vec{S}, S_z\right] \neq 0\n\end{aligned}
$$

Conclusions:

- 1- For one or n-electrons system, both uncouple representation $\langle \ell_i, m_{\ell i}, s_i, m_{si} \rangle = |\ell_i, m_{\ell i} \rangle |s_i, m_{si} \rangle$ and the coupled representation $|\ell, s, j, m_j \rangle$ are eigenfunctions of H_0 and it is immaterial which representation is used.
- 2- $\left\{ \ell, m_\ell, s, m_s \right\}$ will not necessarily be an eigenfunctions of $\vec{L} \cdot \vec{S}$.
- 3- $\vert L, S, J, m_J \rangle$ is a simultaneous eigenfunctions of \hat{J}^2 , \hat{L}^2 , \hat{S}^2 and $\vec{L} \cdot \vec{S}$.

Atomic Term Symbols

Assigning Term Symbols: The ground state of hydrogen atom is one electron in the lowest energy atomic orbital: the 1s. Therefore the total orbital angular momentum off all (one) electrons is:

$$
L = \ell = 0
$$
, and the total electron spin is $S = s = \frac{1}{2}$.

The orbital angular momentum is given as letter symbol. J is the vector sum of L and S:
 $|\vec{J}| = L + S, L + S - 1, L + S - 2, ..., |L - S|$

$$
\vec{J} = L + S, L + S - 1, L + S - 2, ..., |L - S|
$$

So, for 1s-state we have $J = 1/2$.

Example For p-electron we have $\ell = 1$, then the allowed values of j $\overline{}$ for a p-electron are:

$$
\vec{j} = \vec{l} + \vec{s} = 1 + \frac{1}{2} = \frac{3}{2}
$$

$$
\vec{j} = \vec{l} - \vec{s} = 1 - \frac{1}{2} = \frac{1}{2}
$$

Example: For a d-electron $(L = 2, S = 1/2 \implies J = 5/2, 3/2)$.

Comments: The Spin-Orbit Coupling Schemes (LSJ) (*Russell-Saunders Coupling*) is used for light atoms (Z is small, $Z < \approx 36$) and in the case of the Spin-orbit couplings of individual electrons are weak.

Applying the term symbol has the following information:

- 1.) Multiplicity
- 2.) Total angular momentum, J \rightarrow
- 3.) Total orbital angular momentum, L $\overline{}$

 $^{2S+1}L_J^{\blacktriangle}$ +

Spin multiplicity Total angular momentum

Orbital angular momentum

The orbital angular momentum is given as letter symbol.

Consequently, the atomic term symbol for the ground state of H-atom will be ${}^{2}S_{1/2}$. For the excited npstate, we have ${}^{2}P_{1/2}$ and ${}^{2}P_{3/2}$. For the nd-state we will have ${}^{2}D_{3/2}$ and ${}^{2}D_{5/2}$.

Example: Calculate the possible values of $\vec{L} \cdot \vec{S}$ for a p-electron $(\ell = 1, s = \frac{1}{2})$.

Answer: Use the relation:

$$
\vec{J} = \vec{L} + \vec{S} \implies \left| \vec{J} \right|^2 = \left(\vec{L} + \vec{S} \right)^2 = \left| \vec{L} \right|^2 + \left| \vec{S} \right|^2 + 2\vec{L} \cdot \vec{S}
$$

$$
\therefore \vec{L} \cdot \vec{S} = \frac{1}{2} \left[\left| \vec{J} \right|^2 - \left| \vec{L} \right|^2 - \left| \vec{S} \right|^2 \right] = \frac{1}{2} [J(J+1) - L(L+1) - S(S+1)]
$$

For $J = \frac{3}{2}$

The following figure illustrates the relative orientation of the three vectors.

Figure: Spin-orbit splitting of energy levels and possible transitions. The spin-orbit interaction splits each of the $\ell \neq 0$ states.

Notes:

- 1- The dashed line indicates a transition with very low probability.
- 2- The transition $3p \rightarrow 1s$ will be allowed but with low intensity compared with the transition $3p \rightarrow 2s$;

Example
Calculate $L \cdot S$ for a 3F_2 state.

For a 3F_2 state, $S = 1$, $L = 3$ and $J = 2$. From the result of Problem 22.1 we have $L \cdot S = \frac{1}{2} [J(J+1) - L(L+1) - S(S+1)] \hbar^2 = \frac{1}{2} [2(2+1) - 3(3+1) - 1(1+1)] \hbar^2 = -4 \hbar^2$

General recipe for working out the coupling states for N-electron

Going from the uncoupled states $\langle L, S, M_L, M_s \rangle$ to the coupled one $\langle L, S, J, M_L \rangle$, we have to do the following:

1- Calculate the allowed values of the total angular momentum J, i.e.
\n
$$
J = \underbrace{L+S}_{1st\text{-group}}, \underbrace{L+S-1}_{2nd\text{-group}}, L+S-2, \cdots, \underbrace{L-S}_{last\text{-group}}]
$$

where:

$$
M_{L} = L, L-1, L-2, \cdots, -(L-1), -L;
$$

\n
$$
M_{S} = S, S-1, S-2, \cdots, -(S-1), -S;
$$

\n
$$
M_{J} = M_{L} + M_{S}
$$

\n
$$
M_{J} = J, J-1, J-2, \cdots, -(J-1), -J
$$

2- Identify the highest state with the maximum quantum number; in coupled i.e. $J_{\text{max}} = L + S$, *M* $_{J_{\text{max}}} = M_{L_{\text{max}}} + M_{S_{\text{max}}}$ and the corresponding values in the uncoupled representation, i.e. $\left| L_{\text{max}} , S_{\text{max}} , M_{L_{\text{max}}} , M_{S_{\text{max}}} \right\rangle = \left| M_{L_{\text{max}}} , M_{S_{\text{max}}} \right\rangle$.

- 3- Use the lower operators, for both representations, to calculate the following lower state.
- 4- Repeat step 3 till you reach the lowest state in the first group.
- 5- Go for second group and repeat steps 2-4 with orthogonality condition.
- 6- Repeat the process to reach the last group.

Atomic Units

They are obtained by defining $\hbar = 1$, $m_e = 1$, $e = 1$, $k = 1/4\pi\varepsilon_o = 1$ (a.u) (The units in the electron's world.) Note that in equating $\hbar = 1$, $m_e = 1$, $e = 1$, $k = 1/4\pi\epsilon_e = 1$ the dimensions of these quantities are ignored. Hence, equations written in atomic units are not dimensionally correct in the usual sense.

The atomic unit of length, 1 Bohr, equals the radius of the lowest Bohr orbit in the hydrogen atom. In SI units,

$$
a_o = \frac{\hbar^2}{km e^2} \approx 0.05 \text{ nm.}
$$

$$
a_o = \frac{\hbar^2}{km e^2} = 1 \text{ (atomic units)}
$$

The atomic unit of energy, 1 Hartree, is defined to be twice the ionization energy of the hydrogen atom (= $-E_{pot}$ for the electron in the lowest Bohr orbit with n = 1). In SI units,

$$
E_{pot} = \frac{ke^4}{a_0 \hbar^2 n^2} \approx 27.2 \text{ eV}, \qquad n = 1
$$

\n
$$
E = \frac{ke^4}{a_0} = 1 \quad \text{(atomic units)}
$$

\n1 Hartree = $\frac{k^2me^4}{\hbar^2} = \frac{me^4}{(4\pi\varepsilon_0)^2\hbar^2} = \frac{(9.1091 \times 10^{-31} \text{ kg})(1.6021 \times 10^{-19} \text{ C})^4}{(1.1126 \times 10^{-10} \text{ C}^2 \cdot \text{J}^{-1} \cdot \text{m}^{-1})^2 (1.0545 \times 10^{-34} \text{ J} \cdot \text{s})^2} = 4.3595 \times 10^{-18} \text{ J}$
\n1 Hartree = 2625 kJmol⁻¹⁸
\nUse $E = hv = h\frac{c}{\lambda} = hc\overline{v}$, then
\n
$$
\overline{v} = \frac{1 \text{ Hartree}}{hc} = \frac{4.36 \times 10^{-18} \text{ J}}{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(3.0 \times 10^8 \text{ m/s})} = 2.195 \times 10^7 \text{ m}^{-1} = 2.195 \times 10^5 \text{ cm}^{-1}
$$

For hydrogen atom:

$$
1 \text{ Ryd} = \frac{k^2me^4}{2\hbar^2} = \frac{me^4}{2(4\pi\epsilon_o)^2\hbar^2} = \frac{(9.1091x10^{-31}\text{kg})(1.6021x10^{-19}\text{C})^4}{2(1.1126x10^{-10}\text{C}^2.\text{J}^{-1}.\text{m}^{-1})^2(1.0545x10^{-34}\text{J}.\text{s})^2} = \frac{4.3595 \times 10^{-18}}{2} \text{J}
$$

$$
= 13.6 \text{ eV}
$$

It could be written as:

1 Ryd =
$$
\frac{1}{2}mc^2 \left(\frac{k^2e^2}{\hbar c}\right)^2 = \frac{1}{2}mc^2\alpha^2
$$
,

where α is the fine-structure constant, $\alpha = \frac{1}{10}$ 137 $\alpha = \frac{1}{12}$ and $mc^2 = 511$ keV. Then

$$
E_n^{(0)} = -\frac{1}{n^2} \frac{k^2 m e^4}{2h^2} = -\frac{1}{n^2} \frac{1}{2} m c^2 \alpha^2
$$

Note that:

$$
E_1^{(0)} = -\frac{1}{2}mc^2\alpha^2 = -\frac{1}{2}(511 \times 10^3 \text{ eV})\left(\frac{1}{137}\right)^2 = -13.6 \text{ eV}
$$

Table: Conversion factor 1 Å (angström) = 0.1 nm = 10⁻¹⁰ m = 10⁻⁸ cm 1 fm (femtometer or Fermi) = 10^{-6} nm = 10^{-15} m λ (in \hat{A}) $\times \bar{\nu}$ (in cm⁻¹) = 10⁸ (from $\lambda \bar{\nu}$ = 1) $a_0 = 5.29177 \times 10^{-11}$ m = 0.529 177 Å $a_0^2 = 2.80028 \times 10^{-21}$ m² $\pi a_0^2 = 8.79735 \times 10^{-21} \text{ m}^2$ $1 Hz = 1 s^{-1}$ 1 electron mass (m_e) = 0.511 003 MeV/ c^2 1 proton mass $(M_n) = 938.280 \text{ MeV}/c^2$ 1 a.m.u. = $1/12 M_{12c} = 1.66057 \times 10^{-27}$ kg = 931.502 MeV/c² 1 J = 10^7 erg = 0.239 cal = 6.241 46 × 10^{18} eV 1 cal = 4.184 J = 2.611 \times 10¹⁹ eV $1 eV = 1.60219 \times 10^{-19} J = 1.60219 \times 10^{-12}$ erg $1 \text{ MeV} = 1.60219 \times 10^{-13} \text{ J} = 1.60219 \times 10^{-6} \text{ erg}$ 1 eV corresponds to: a frequency of 2.41797 \times 10¹⁴ Hz (from $E = h\nu$) a wavelength of 1.23985×10^{-6} m = 12398.5 Å (from $E = hc/\lambda$)
a wave number of 8.06548 × 10⁵ m⁻¹ = 8065.48 cm⁻¹ (from $E = hc\bar{\nu}$) a temperature of 1.16045 \times 10⁴ K (from $E = kT$) 1 cm^{-1} corresponds to an energy of 1.23985 \times 10⁻⁴ eV a frequency of 2.99792 \times 10¹⁰ Hz 1 atomic unit of energy = 27.2116 eV corresponds to a frequency of 6.57968 \times 10¹⁵ Hz a wavelength of 4.55633 × 10⁸ m = 455.633 Å
a wave number of 2.19475 × 10⁷ m⁻¹ = 219475 cm⁻¹ a temperature of 3.15777×10^5 K 1 a.m.u. corresponds to an energy of 931.502 MeV = 1.49244×10^{-10} J $kT = 8.61735 \times 10^{-5}$ eV at $T = 1$ K $hc = 1.23985 \times 10^{-6} \text{ eV} \times \text{m} = 12398.5 \text{ eV} \times \text{\AA}$ $\hbar c = 1.97329 \times 10^{-7} \text{ eV} \times \text{m} = 1973.29 \text{ eV} \times \text{\AA}$ ΔE (in eV) $\times \Delta t$ (in s) = 6.58218 \times 10⁻¹⁶ eV \times s (from $\Delta E \Delta t = \hbar$)