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Atomic Units 

Helium-like atoms 
The general Hamiltonian of the He-like ions is defined by the 
equation: 

2 2 2 2 2
2 2
1 2

1 2 12

ˆ
2 2e e

Ze Ze eH k k k
m m r r r

= − ∇ − ∇ − − +  

To avoid dealing with constant factors in the lengthy calculations 
and to make equations and integrals more clearly legible, it is 
common in theoretical atomic, molecular physics and quantum 
chemistry to use so-called atomic units. They are obtained by 
defining 1, 1, 1, 1/ 4 1e om e k πε= = = = = (a.u)  (The units in the 
electron’s world.) and the above equation will be 

2 2
1 2

1 2 12

1 1 1ˆ
2 2

Z ZH
r r r

= − ∇ − ∇ − − +  

Note that in equating 1, 1, 1, 1/ 4 1e om e k πε= = = = = the dimensions of these quantities are 
ignored. Hence, equations written in atomic units are not dimensionally correct in the usual sense. 
The atomic unit of length, 1 Bohr, equals the radius of the lowest Bohr orbit in the hydrogen atom. 
In SI units, 

                                                    
2

2 0.05 nm.oa
kme

= ≈     

2

2 1    (atomic units)oa
kme

= =  

The atomic unit of energy, 1 Hartree, is defined to be twice the ionization energy of the hydrogen 
atom (= potE− for the electron in the lowest Bohr orbit with n = 1). In SI units, 

                                                  
4

2 2 27.2 eV,                 1pot
o

ke
a

E n
n

= ≈ =  

4

1    (atomic units)
o

ke
a

E = =  

2 2 2 31 19 4
18

2 2 2 10 2 1 1 2 34 2

(9.1091x10 kg)(1.6021x10 C)1 Hartree 4.3595 10 J
(4 ) (1.1126x10 C .J .m ) (1.0545x10 J.s)o

k me me
πε

− −
−

− − − −= = = = ×  

181 Hartree (1 H) 4.3595 10 J 27.2 eV 2 Ry−= × = =  
-11 Hartree 2625 kJmol=  

Use 
cE h h hcν ν
λ

= = = , then 

18
7 -1 5 -1

34 8

1 Hartree 4.36 10 J 2.195 10 m 2.195 10 cm
(6.626 10 J.s)(3.0 10 m/s)hc

ν
−

−

×
= = = × = ×

× ×
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ONE-ELECTRON ATOM IN SPHERICAL POLAR COORDINATES 
 

Hydrogenic atoms are atoms with nucleus (H+, Fe26+, Pb82+, ) and one electron. The hydrogenic 
atom has an analytic solution. i.e., the solution is exact, no approximations are needed. 
Coulomb Potential 
From Coulomb’s law, the potential energy between any two charges, q1 and q2, is  

( ) 1 2

12 0

q q 1V r k ,          k
r 4

= =
πε

  

- r12 is the distance between the two charges 
- ε0 is the permittivity of free space 

 
For a hydrogenic atom, the potential energy can be written as 

( )
2ZeV r k

r
= −   

- r is the distance of the electron from the nucleus. 
- Z is the charge of the nucleus 
- e is the fundamental unit of charge (i.e., the charge of e-) 

 
Center of Mass and Relative Coordinates 
 Hydrogenic atoms have two particles; therefore, the Hamiltonian can be written as 

( )
2 2
1 2

1 2

p p V r
2m 2m

= + +H  

At this point we note that the potential energy does not depend on where the total system is in 
space.  However, the potential energy does depend on the position of the particles relative to each 
other. 
 
 The simplest coordinate system one could choose is based on the Cartesian coordinates of each 
particle, so that, H is a function of x1, y1, z1, x2, y2, z2. This simple coordinate system can be 
transformed into a system described by center-of-mass coordinates and relative coordinates. 
 

z

y

x

z1

x1 y1

z2

x2

y2

r1

r2

z

y

x

z12

x12

y12

ZCM

XCM

YCM
r12

RCM

 
 
Thus the Hamiltonian can be rearranged in terms of the center-of-mass and relative coordinates. 
 

( )
2 2
CM rel

12
p p V r
2M 2

= + +
µ

H  
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where 1 2M m m= +  and µ  is the reduced mass of the system 1 2

1 2

m m
m m

=
+

 or 
1 2

1 1 1
m m

= +
µ

. Note 

for the hydrogen atom 
4

4
e p

1 1 1 1 1 5.48281 10 amu
m m 5.48580 10 amu 1.00727 amu

−
−= + = + ⇒ µ = ×

µ ×
 

 
Schrödinger Equation 
 
The Coulombic potential is radially symmetric, that is, the value of the electric field coming from 
the nucleus depends only on how far away from the nucleus we are.  The value has no dependence 
on the orientation, i.e., the angular variables.  Thus using a radially symmetric coordinate system 
such as the polar spherical coordinates system would be sensible. 
The kinetic energy operator in polar spherical coordinates is 
 

2 2
2

2 2 2 2 2

1 1 1T̂ r sin
2 r r r r sin r sin

⎧ ⎫− ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + θ +⎨ ⎬⎜ ⎟ ⎜ ⎟µ ∂ ∂ θ ∂θ ∂θ θ ∂φ⎝ ⎠ ⎝ ⎠⎩ ⎭
 

Note the relationship between the kinetic operator in polar spherical coordinates and the 3-D 
angular momentum operator. 

2 2
2

2 2 2 2 2

2 2 2
2 2 2

2 2 2 2 2 2 2

2

2

1 1 1T̂ r sin
2 r r r r sin r sin

1 1 1 1 1 1 ˆr sin r L
2 r r r r sin sin 2 r r r r

1 r
2 r r

⎧ ⎫− ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + θ +⎨ ⎬⎜ ⎟ ⎜ ⎟µ ∂ ∂ θ ∂θ ∂θ θ ∂φ⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎡ ⎤− ∂ ∂ ∂ ∂ ∂ − ⎧ ∂ ∂ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤= + θ + = −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎣ ⎦µ ∂ ∂ θ ∂θ ∂θ θ ∂φ µ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎩ ⎭⎣ ⎦⎩ ⎭

− ∂
=

µ ∂

2
2

2 2

L̂
r r

⎧ ⎫∂⎪ ⎪⎛ ⎞ −⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 

Recall that the coulombic potential is ( )
2ZeV r k

r
= −  

Thus, the Hamiltonian and the Schrödinger equation can be written as 
2 2 2

2
2 2 2

ˆ1 L Zeˆ ˆˆ T V r k
2 r r r r r

⎧ ⎫− ∂ ∂⎪ ⎪⎛ ⎞= + = − −⎨ ⎬⎜ ⎟µ ∂ ∂⎝ ⎠⎪ ⎪⎩ ⎭
H  

2 2 2
2

2 2 2

ˆ1 L Zeˆ r k E
2 r r r r r

⎧ ⎫− ∂ ∂ψ ψ⎪ ⎪⎛ ⎞ψ = − − ψ = ψ⎨ ⎬⎜ ⎟µ ∂ ∂⎝ ⎠⎪ ⎪⎩ ⎭
H  

To solve this partial differential equation, we will use the separation of variables technique. 
Let ( ) ( ) ( ) ( )r, , R rψ θ φ = Θ θ Φ φ , then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2
2 2 2

ˆ1 L Zer R r R r k E R r 0
2 r r r r r

⎧ ⎫ ⎧ ⎫− ∂ ∂⎪ ⎪⎛ ⎞Θ θ Φ φ − Θ θ Φ φ − + Θ θ Φ φ =⎨ ⎬ ⎨ ⎬⎜ ⎟µ ∂ ∂⎝ ⎠⎪ ⎪ ⎩ ⎭⎩ ⎭
 

Allow the differential operators to operate. 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

22 2
2

2 2 2

ˆR r L Zer R r k E R r 0
2 r r r r r

⎧ ⎫Θ θ Φ φ ∂ Θ θ Φ φ⎛ ⎞ ⎧ ⎫− ∂⎪ ⎪− − + Θ θ Φ φ =⎨ ⎬ ⎨ ⎬⎜ ⎟µ ∂ ∂ ⎩ ⎭⎪ ⎪⎝ ⎠⎩ ⎭
 

Recall that ( ) ( ) ( ) ( )2 2L̂ ( +1)Θ θ Φ φ = Θ θ Φ φ , then 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

2
2 2

R r ( +1) Zer R r k E R r 0
2 r r r r r

⎧ ⎫Θ θ Φ φ ∂⎛ ⎞ ⎧ ⎫− ∂⎪ ⎪− Θ θ Φ φ − + Θ θ Φ φ =⎨ ⎬ ⎨ ⎬⎜ ⎟µ ∂ ∂⎪ ⎪ ⎩ ⎭⎝ ⎠⎩ ⎭
 

Now divide the equation by ( ) ( ) ( ) ( )r, , R rψ θ φ = Θ θ Φ φ  
 

( )
( )

( )
( )

2 2
2

2 2

2 2 2
2

2 2

R r1 1 ( +1) Zer k E 0
2 R r r r r r r

R r1 ( +1) Zer k E 0
R r 2 r r r 2 r r

⎧ ⎫∂⎛ ⎞− ∂⎪ ⎪− − − =⎨ ⎬⎜ ⎟µ ∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
∂⎛ ⎞− ∂

+ − − =⎜ ⎟µ ∂ ∂ µ⎝ ⎠

 

 
Radial Equation 
Thus the radial equation for a hydrogenic atom is 
 

( ) ( )
2 2 2

2
2 2

R r ( +1) Zer k E R r 0
2 r r r 2 r r

∂⎛ ⎞ ⎡ ⎤− ∂
+ − − =⎜ ⎟ ⎢ ⎥µ ∂ ∂ µ⎣ ⎦⎝ ⎠

 

The equation can be related to a differential equation called the associate Laguerre equation. 
The solutions to the generalized Laguerre equation depend on two quantum numbers, n and . 

[ ]

( )

3/ 2
/ 2 1

3

3/ 2
/ 2

2 ( 1)! 2( ) ( ),
2 ( )!

2 1 ( )! ( 1),2 2,
(2 1)! 2 ( 1)!

Zr n
nl n

l

Z n ZrR r e L
n nn n

Z n e F n
n n n

ρ

ρ ρ ρ

ρ ρ

− +
+

−

− −⎛ ⎞= − =⎜ ⎟
⎝ ⎠ +

+⎛ ⎞= − − − +⎜ ⎟ + − −⎝ ⎠

 

The 2 1( )nL ρ+
+  is the associate Laguerre polynomials.  F is the (confluent) hypergeometric function: 

( ) ( )
( )

21
, , 1

1! 1 2!
F x x x

α ααα β
β β β

+
= + + +

⋅ +
. 

 In general the hydrogenic wavefunction is a product of the radial wavefunction and the spherical 

harmonic.  ( ) ( ) ( )1, , ( ) , ( ) ,m m
n m n nln m r P r Y R r Y

r
θ φ θ φ θ φ= Ψ = =  

( ) ( ) ( )1, , ( ) , ( ) ,m m
n m n nln m r P r Y R r Y

r
θ φ θ φ θ φ= Ψ = =  

 
**Another useful function: 

( ) ( ) ( ) ( ) ( )
( )

1 1 1 1
, , ,

1 !
F x x ν

ν

α α α ν β β β ν
α β γ

γ γ ν ν
+ + − + + −

=
+ −∑  

is the hypergeometric function. 
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Laguerre  D ifferen tia l equation  
D ifferential equation  

2

2 (1 ) ( ) 0n
d dx x n L x
dx dx

⎡ ⎤
− − + =⎢ ⎥

⎣ ⎦
 

  
D efinition 

( )( ) ,                                0,1, 2,3,
n

x x n
n n

dL x e e x n
dx

−= =  

O rthogonality relation  

( )2

0

( ) ( ) ( 1)x
n m m ne L x L x dx n δ

∞
− = Γ +∫  

( )nL x n( )nL x n

2 4 2x x− + 2 1 0 
3 29 18 6x x x− + − +3 1x− +1 

 

Associated Laguerre Polynom ials  
 

D ifferential equation 

( )
2

2 ( 1 ) ( ) 0m
n

d dx m x n m L x
dx dx

⎡ ⎤
− + − + − =⎢ ⎥

⎣ ⎦
  

  D efinition 

0

( ) ( )                  , 0,1, 2,3,

( ) ( ); ( ) 0        if  

m
m
n nm

m
n n n

dL x L x m n
dx

L x L x L x m n

⎡ ⎤= =⎣ ⎦

= = >
 

  

( )m
nL x mn( )m

nL xmn
23 18 18x x− + −1 3 1− 1 1 

6 18x− + 2 3 2 4x −1 2 

6− 3 3 2 2 2 
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A Table of Radial Wavefunctions, nlR  
 

n  l  orbit nlR  

1 0 1s 
( )3/ 22 ZrZ e−  

0 2s ( )3/ 2 / 21 (1 )
22

ZrZ
Zr e−−  

2 

1 2p ( )5/ 2 / 21
2 6

ZrZ re−  

0 3s ( ) ( )23/ 2 /32 2 21
3 273 3

ZrZ Zr Zr e−⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

1 3p ( ) ( )23/ 2 /38 1
627 6

ZrZ Zr Zr e−⎛ ⎞−⎜ ⎟
⎝ ⎠

 3 

2 3d ( )7 / 2 2 /34
81 30

ZrZ r e−  

0 4s 
( ) ( ) ( )( )

3 2 3 Zr / 426 Z 192 144Zr 24 Zr Zr e−− + +  

1 4p ( ) ( )
5

2 2 3 Zr / 42
1 Z 80r 20Zr Z r e

256 15
−− +  

2 4d ( ) ( )
7

2 3 Zr / 42
1 Z 12r Zr e

768 15
−−  

4 

3 4f ( )
9

4 Zr / 42
4 Z r e

768 35
−  

 
It is helpful for dealing with these functions to have some idea of their form which are shown in the 
figures below.  

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

r/a 0

Rn
l(

r)

n= 1, l= 0

n= 2, l= 0

n= 2,  l= 1

 
Figure 1: Radial part of the wavefunction )(, rR ln for n = 1, l = 0; n = 2, l = 0, 1. 
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0

0.2

0.4

0.6

0 5 10 15 20

r/a 0

P n
,l

(r
/a

0
)

n =1, l= 0

n =2, l= 0
n =3, l= 0

 

Figure 2: Radial extent of the probability density 
22

, , ,( ) ( )n l n l n lP r C r R r= for the hydrogen atom with 
n = 1, 2, 3 and l = 0. 

 

0

0.05

0.1

0.15

0 5 10 15 20

r/a 0

P n
,l
(r

/a
0
)

n =3, l= 1

n =3, l= 2 n =3, l= 0

 

Figure 1: Radial extent of the probability density 
22

, , ,( ) ( )n l n l n lP r C r R r= for the hydrogen atom with 
n = 3, and l = 0, 1, 2. 
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Plots of Radial Wave functions 

 
 
 



Prof. Dr. I. Nasser                                     atomic and molecular physics -551                                         February 1, 2012 
Hydrogenic_Atom_t112.doc 

 10

 
It should be noted that  
 

i) nlmΨ  are orthonormal wave function, due to the fact: 

, ' , ' , ' , '

2
* 2 *

', ' , ', ' ,
0 0 0

( ) ( ) ( , ) ( , )sin 1

n n l l l l m m

n l n l l m l mR r R r r dr Y Y d d
π π

δ δ δ δ

θ ϕ θ ϕ θ θ ϕ
∞

=∫ ∫ ∫  

ii) s-wavefunctions are non-zero at nucleus. p, d, f, … are zero at nucleus (for point 
nucleus). 

iii) orbitals with larger n extend further from the nucleus, 
iv) 2 2( )

nlnlP r r R= is the probability that the electron be found in the spherical shell 
between r and r+dr. 

v) 2 2| ( , ) | | (cos ) |m
lm lY d P dθ ϕ θΩ Ω∼  is the probability that the electron be found at 

( , )θ ϕ  of the element dΩ . The probability does not depend on ϕ  since we have 
spherically symmetric potential. 

vi) The probability density for finding an electron at the nucleus tends to zero in all cases. 

Remember that ( )nlR r  depends upon lr . 
vii) The radial nodes: where ( ) 0nL x = , there are n 1− −  nodes in the radial wavefunction. 

viii) Mean values of power is 2 2

0

( )k k
nr r R r dr

∞
+= ∫  

2

2
2 2

2

2

1| | [3 3 ( 1)],
2

| | [5 1 3 ( 1)],
2

1| |

nl r nl n l l
Z
nnl r nl n l l
Z

Znl nl
r n

< >= − +

< >= + − +

< >=

 

 
 

k Name 
1 Dipole 
2 Quadrupole
3 Octupole 
-1 Coulomb 
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ATOMIC ORBITALS 
  
Recall that the principal quantum number (n) describes the energy level (i.e., distance from nucleus) of the 
electron; the angular momentum quantum number ( ), the shape of the orbital, and; the magnetic quantum 
number (m), the x-, y-, and z-coordinate orientation of the orbital. 
 
1. Shapes of the orbitals: (q.v., below figure) 

A. When l = 0, the only choice for m is 0. In other words, there is only one possible orientation for the 
orbital.  What shape is the same in all three coordinates?  A sphere!  It is called the s-shaped orbital. 

 
B. When 1= , there are three choices for m (–1, 0, +1).  This means that there are three possible 

orientations for the orbital.  Each orbital has looks like a small sphere is each of the upper and lower 
hemispheres. It is called the p-shaped orbital. 

 
C. When 2= , there are five choices for m (–2, –1, 0, +1, +2).  This means that there are five possible 

orientations for the orbital.  It is called the d-shaped orbital. 
  
D. The last remaining ground-state shaped orbital is called the f-shaped orbital.  There are seven 

possible orientations for it and a few ideas of what it looks like. 
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Introduction to Electronic Spectra 
 
Spectrum is measured by observing how light interacts with matter, creating excitations and de-
excitations. 
For electronic spectra,  
 - the values the energy levels are of secondary importance 
 - the difference in energy levels is of primary importance 
 
Energy of a hydrogenic atom 

2 4

n H2 2 2 2 2
0

Z e 1 1E R
32 n n

µ
= − ⋅ = − ⋅

π ε
 

This is exactly Bohr's result!!! 
 
By substituting the values for all of the physical constants, we can write this energy in the more convenient 
form of 
 

2 2 2

n 2 2 2

Z Z ZE Ry a.u. (13.6 eV)
n 2n n

= − = − = −  

Spectral lines for a hydrogenic atom 
2 2

         n 12 2 3
High  Rydberg statesi f

Z 1 1 ZE
2 n n n>>

⎛ ⎞
∆ = − ⎯⎯⎯⎯⎯⎯→⎜ ⎟

⎝ ⎠
 

Selection rules for hydrogenic atoms – the allowed changes in quantum numbers  
  – i.e., allowed transitions between energy levels. 
 Change of the principal quantum number 

n 1, 2, 3,∆ = ± ± ± …  
 Change of the azimuthal quantum number 

1∆ = ±  
 Change of the magnetic quantum number 

m 0, 1∆ = ±  
The 1∆ = ±  selection rule implies that the 2s ← 1s transition is a forbidden transition 
Energy level diagram of a hydrogenic atom 
 

1s

2s

3s
4s

2p

3p
4p

3d
4d 4f
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Note:  For a hydrogenic atom, the energy levels depend only on the principal quantum number.  For 
a multi-electron atom (i.e., two or more electrons), the energy levels depend on both the principal 
quantum number and the azimuthal quantum number. 
 
Degeneracy of atomic orbitals 
 
Degeneracy of p orbitals: The wavefunctions for p orbitals are in terms of the spherical harmonics 

( )mY ,θ φ  are: 

( )
1
20

1
3Y , cos

4
⎛ ⎞θ φ = θ⎜ ⎟π⎝ ⎠

,   ( )
1
21 i

1
3Y , sin e

8
φ⎛ ⎞θ φ = θ⎜ ⎟π⎝ ⎠
 ,    ( )

1
21 i

1
3Y , sin e

8
− − φ⎛ ⎞θ φ = θ⎜ ⎟π⎝ ⎠

 

Note that: ( )1
1Y ,θ φ  and ( )1

1Y ,− θ φ  are complex functions and we are not able to visualize a 

complex orbital.  However, since ( )1
1Y ,θ φ  and ( )1

1Y ,− θ φ  are degenerate, any linear combination of 
them is also a solution to the Schrödinger equation. We can make real wavefunction by taking the 
following linear combinations 

( ) ( )
1 1
2 21 1 i i

x 1 1
1 3 3p Y Y sin e e sin cos

16 42
− φ − φ⎛ ⎞ ⎛ ⎞= + = θ + = θ φ⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠

  

( ) ( )
1 1
2 21 1 i i

y 1 1
i 3 3p Y Y i sin e e sin sin

16 42
− φ − φ− ⎛ ⎞ ⎛ ⎞= − = − θ − = θ φ⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠

 

There is no substantial difference between the ( )1
1Y ,θ φ  and ( )1

1Y ,− θ φ  and the ( )xp ,θ φ  and 

( )yp ,θ φ  orbitals.  Choosing one set over another is matter of convenience. 
 

State Spherical Harmonics 
 
s 

1 2
0

0
1

4
Y

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
p      ( )

1
20

1
3Y , cos

4
⎛ ⎞θ φ = θ⎜ ⎟π⎝ ⎠

,      ( )
1
21 i

1
3Y , sin e

8
± ± φ⎛ ⎞θ φ = θ⎜ ⎟π⎝ ⎠

 

 
 

d 
( ) ( )

1
20 2

2
5Y , 3cos 1

16
⎛ ⎞θ φ = θ −⎜ ⎟π⎝ ⎠

,      ( )
1
21 i

2
15Y , sin cos e
8

± ± φ⎛ ⎞θ φ = θ θ⎜ ⎟π⎝ ⎠
  

  ( )
1
22 2 2i

2
15Y , sin e
32

± ± φ⎛ ⎞θ φ = θ⎜ ⎟π⎝ ⎠
   

 
After linear combination of d-state, we have: 

( ) ( ) ( )2

1
20 2

2z

5d , Y , 3cos 1
16

⎛ ⎞θ φ = θ φ = θ −⎜ ⎟π⎝ ⎠
,    ( )

1
21 1

xz 2 2
1 15d Y Y sin cos cos

42
− ⎛ ⎞= + = θ θ φ⎜ ⎟π⎝ ⎠

  

( )
1
21 1

yz 2 2
i 15d Y Y sin cos sin

42
−− ⎛ ⎞= − = θ θ φ⎜ ⎟π⎝ ⎠

,    ( )2 2

1
22 2 2

2 2x y

1 15d Y Y sin cos2
162

−
−

⎛ ⎞= + = θ φ⎜ ⎟π⎝ ⎠
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( )
1
22 2 2

xy 2 2
i 15d Y Y sin sin2

162
−− ⎛ ⎞= − = θ φ⎜ ⎟π⎝ ⎠
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Appendix I 
 

Spherical Coordinates 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{ } { } { }

2 2 2

2 2
1

1

1 2, ,
2

0, , 0, 2 , 0, ,

sin cos , | |

| |sin sin ,       tan
| | | |

cos ,             tan

y z

y x x
z x

y
x

r

x r x

xy r

z r

θ

ϕ

θ π ϕ π

θ ϕ

θ ϕ

θ

−

−

⎫+ + ⎪
⎪+ ⎪ =⎬ ∂⎪
⎪
⎪⎭

≡ ≡ ≡ ∞

= =

∂= = =

= =

r

r
r r  

 
2d r dr dτ = Ω,  

 
H.W.  Prove the following:  

2 2 2 2

2 3 2 2

/

1, ,

x r

r x x x x
x x r r r x x r r r r r r r

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= = = = − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  

 

x y
ϕ

∂
= −

∂
 sin

sinx r
ϕ ϕ

θ
∂

= −
∂

 cos cos
x r
θ θ ϕ∂

=
∂

 sin cosr x
x r

θ ϕ∂
= =

∂
 

y x
ϕ

∂
=

∂
 cos

siny r
ϕ ϕ

θ
∂

=
∂

 cos sin
y r
θ θ ϕ∂

=
∂

 sin sinr y
y r

θ ϕ∂
= =

∂
 

0z
ϕ

∂
=

∂
 0

z
ϕ∂

=
∂

 sin
z r
θ θ∂

= −
∂

 cosr
z

θ∂
=

∂
 

r

Z 

X 

y = r sinθ sinφ 

P(r,θ,φ) 

φ 

θ 
z = r cosθ 

x = r sinθ cosφ 

Y 
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H.W.  Prove that the Laplace's equation in spherical coordinates is given by: 
2 2

2
2 2 2 2 2

2
2

2 2 2 2 2

1 1 1( , , ) ( ) sin
sin sin

1 1 1( ) sin 0
sin sin

V VV r
r r r r

V V Vr
r r r r r

rVθ φ θ
θ θ θ θ φ

θ
θ θ θ θ φ

∂ ∂ ∂ ∂⎛ ⎞∇ = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂ ∂⎛ ⎞= + + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 

H.W. Prove that: 
2

2
2 2

1 1( ) ( )Vr
r r r r r

rV∂ ∂ ∂
=

∂ ∂ ∂
 

 
Coulomb Potential Energy: 

   ,                      
2

o

1ZeV(r) = k k
r 4π ε

− =         (1) 

Time-independent Schrödinger Equation: 
 

-
2

(r, , )+V(r) (r, , ) = E (r, , )
2

2

µ
ψ θ φ ψ θ φ ψ θ φ∇     (2) 

----------------------------------------------------------------------------------------------------------- 
 
Transform Laplacian from rectangular to spherical polar coordinates: 

2 2 2

2 2 2
2 = + +

x y z
∂ ∂ ∂

∇
∂ ∂ ∂

 

Use the chain rule, 
 

          

          

r
x r x x x

r
y r y y y

r
z r z z z

∂ ∂ ∂ ∂ ∂θ ∂ ∂φ
∂ ∂ ∂ ∂θ ∂ ∂φ ∂
∂ ∂ ∂ ∂ ∂θ ∂ ∂φ

∂ ∂ ∂ ∂θ ∂ ∂φ ∂
∂ ∂ ∂ ∂ ∂θ ∂ ∂φ

∂ ∂ ∂ ∂θ ∂ ∂φ ∂

= + +

= + +

= + +

 

 
to find: 

∇ = + +2
2

2
2 2 2

2

2

1 1 1
r r

r
r r r

∂
∂

∂
∂ θ

∂
∂θ

θ
∂

∂θ θ
∂

∂φ
( )

sin
(sin )

sin
   (3) 

 
----------------------------------------------------------------------------------------------------------- 
 
Assume that the eigenfunction is separable: 
 

ψ θ φ θ φ( ) ( ) ( ) ( )r, , = R r Θ Φ         (4) 
 
 
Substituting (3)&(4) into (2) gives: 
 

-
2

1
r r

r
R
r

+
R

r
+

R
r

+VR = ER
2

2
2

2 2 2

2

2µ θ
θ

θ φ
ΘΦ

Φ Θ Φ
ΘΦ ΘΦ

∂
∂

∂
∂

∂
∂θ

∂Θ
∂θ

∂
∂

⎡

⎣
⎢

⎤

⎦
⎥( )

sin
(sin )

sin
        (5)  
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** Note that all of the derivatives are now ordinary derivatives so we can replace ∂ by d. 
 

Multiply (5) by   
- r

R
2

2

2 2µ θsin
ΘΦ

and rearrange terms to obtain: 

 
2 2

22 2
2 2

1 sin 2sin ( ) (sin ) ( ( ) )sin
d dR d dd = V r - Er rR dr dr d dd

θ θ µθ θ
θ θφ

Φ Θ
− − +

Φ Θ
            (6) 

 
Notice that the LHS only involves functions of φ while the RHS only involves functions of r and θ .  Thus, 
both sides must equal a constant which we'll call C. 
 
----------------------------------------------------------------------------------------------------------------------- 
 
1. FINDING Φ(φ) 
 
Setting the LHS of (6) equal to this constant C gives: 

1 2

2

2

2Φ
Φ Φ

Φ
d
d

= C
d
d

= C
φ φ

            →       (7) 

A solution to (7) is 
Φ( ) eφ φ= C          (8) 

The periodicity of φ requires that Φ(φ) = Φ(φ+2π).  Now a sin or cos function has this periodicity so let 
2C m= −          (9) 

which gives: 
Φ( ) eφ φ= im          (10) 

 This function now has the correct periodicity.  Note that the condition that Φ(0)=Φ(2π) gives 
 

1 2= i mπe          (11) 
Eq. (11) is only satisfied if  

   0, 1, 1,m = ± ±         (12) 
Thus, m  can only have certain values, i.e. it is a quantum number.   
--------------------------------------------------------------------------------------------------------------------------- 
 
2. FINDING Θ(θ) 
 
Eq. (6) can now be written as 
 

2
2 22 2

2

sinsin ( ) (sin ) ( ( ) ) sin
d dR d d 2m V r Er rR dr dr d d

θ θ µθ θ
θ θ

Θ
− = − − + −

Θ
  (13) 

 
 
Dividing by sin2θ and rearranging terms gives: 

2
2 2

2 2

1 1 2(sin ) ( ) ( ( ))
sinsin

m d d d dR E V rr rd d R dr dr
µθ

θ θ θ θ
Θ

− = + −
Θ

   (14) 
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Notice that the LHS only involves functions of θ while the RHS only involves functions of r.  Thus, both 
sides must equal a constant which we'll call ( +1). 
Setting the LHS of this equation equal to this constant gives an equation for Θ(θ): 

)1(
sin

)(sin
sin
1

2

2
+=m+

d
d

d
d-

θθ
Θ

θ
θθΘ

     (15) 

By making a change of variables using z = cosθ , Eq. (15) is transformed into a differential equation called 
the associated Legendre's equation: 
 

2
2

2(1 ) ( 1) 0
1

d d mz =
dz dz z

⎡ ⎤Θ⎡ ⎤− + + − Θ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦
     (16) 

A series solution is found for this equation involving polynomials of z.  These polynomials are called 
associated Legendre functions. 
The requirement that Θ remain finite (i.e. does not blow up) leads to integer values of  and certain 

restrictions on m  as follows: 
     0,1,2, ;=        (17) 

and for a given allowed value of , 

     , 1, ,m = − − + +             (18) 

Thus, we have another quantum number  which dictates possible values for the original quantum number 

m . 
 
We can write the associated Legendre functions with the quantum number subscripts as polynomials of z, or 
to be of more use, as polynomials of cosθ in the form mΘ (cos )θ .  The first few polynomials are given 
below: 
 
 Θ00 = 1     Θ10 = cosθ   Θ1±1 = (1-cos2θ)1/2  
 
 Θ20 = 1-3cos2θ   Θ2±1 = (1-cos2θ)1/2cosθ  Θ2±2 = 1-cos2θ  
 
 
--------------- The Spherical Harmonic Functions ----------------------------- 
 
It is customary to multiply the Φ(φ) and Θ(θ) functions to form the so-called spherical harmonic functions 
which can be written as: 
 

)()()(Y φΦθΘφθ mm
m =,       (19) 

The first few spherical harmonics are given below: 
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Spherical Harmonics: 

Combining the Angular Eigenfunctions together, One gets the Spherical Harmonics: 

( ) 1/ 2

*

2 1 ( )!
( )) ( 1) (cos ) ;        0

4 ( )!

( ) ( 1) ( ); 0,1, 2, ; , 1, ,

m m m im

m mm

m
Y , P e m

m

Y , Y , m

ϕθ φ θ
π

θ φ θ φ−

+ −⎡ ⎤
= − ≥⎢ ⎥+⎣ ⎦
= − = = − − + +

 

which have the characteristic:   *( ) ( 1) ( )m mmY , Y ,θ φ θ φ− = −    and are normalized such that  
2

* '
' ' '

0 0

' ' sin ( , ) ( , )m m
mmm m d d Y Y

π π

ϕ θ θ θ ϕ θ ϕ δ δ= =∫ ∫  

dΩ =solid angle differential    sind d dθ θ φΩ =    
2

4
S

d πΩ =∫  

The closure relation for Spherical Harmonics: 
*

0
( ', ') ( ) ( ') (cos cos ')

l
m m

l m l
Y Y ,θ φ θ φ δ φ φ δ θ θ

∞

= =−

= − −∑ ∑  

The closure relation implies that the mY are complete, i.e. we can represent any function on the 
sphere as 

0
( , ) ( )m

m
m

f a Y ,θ φ θ φ
∞

= =−

= ∑ ∑  

Since the radial Eigenfunctions are given by ( 1)( )U r Ar Br − += + , then ( , , )r θ φΦ  can be 
decomposed as  

( )( 1)

0

( , , ) ( )m
m m

m

r A r B r Y ,θ φ θ φ
∞

− +

= =−

Φ = +∑ ∑  

Recurrence relations  

       
1/ 2 1/ 2

, 1, 1,
( 1 )( 1 ) ( )( )cos ( , ) ( , ) ( , );

(2 1)(2 3) (2 1)(2 1)m m m
m m m mY Y Yθ θ ϕ θ ϕ θ ϕ+ −

⎡ ⎤ ⎡ ⎤+ + + − + −
= +⎢ ⎥ ⎢ ⎥+ + + −⎣ ⎦ ⎣ ⎦

      

1/ 2 1/ 2

, 1, 1 1, 1
( 1 )( 2 ) ( )( 1)sin ( , ) ( , ) ( , )

(2 1)(2 3) (2 1)(2 1)
i

m m m
m m m mY Y Y e ϕθ θ ϕ θ ϕ θ ϕ+ − − −

⎧ ⎫⎡ ⎤ ⎡ ⎤+ − + − + + −⎪ ⎪= + ⎨ ⎬⎢ ⎥ ⎢ ⎥+ + + −⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
 

l m ( )mY ,θ φ  

0 0   1/ 4π  

0   3 cos
4

θ
π

 
1 

1±  
3 sin

8
ie ϕθ

π
±∓  

0   ( )25 3cos 1
16

θ
π

−  

1±  
15 cos sin
8

ie ϕθ θ
π

±∓2 

2±    2 215 sin
32

ie ϕθ
π

±  
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3 Finding R(r) and the quantized energies 
Setting the RHS of Eq. (14) equal to the constant ( +1) gives: 

1 2
12

2
2

R
d
dr r

dR
dr

+ r E -V r = +( ) ( ( )) ( )
µ

     (20) 

 
We define two new variables, with equation (1): 

2
2

2

2

2
4

β
µ

γ
µ
π ε β

=
- E

=
Ze
o

   and            (21) 

Using these substitutions and multiplying Eq. (20) by R / r2 gives: 
 

1 2 1
02

2 2
2r

d
dr

r
dR
dr

+ - +
r

-
+

r
R =( )

( )
β

βγ⎡
⎣⎢

⎤
⎦⎥

     (22) 

By making a change of variables using r = 2βρ and dividing by 4β2, this Eq. (22) becomes: 
1 1 1

02
22

d
d

dR
d

+ -
4

+ -
+

R =
ρ ρ

ρ
ρ

γ
ρ ρ

( )
( )⎡

⎣
⎢

⎤

⎦
⎥      (23) 

We are looking for solutions to Eq. (23) in the form: 
R = F - /( ) ( ) eρ ρ ρ 2         (24) 

Substituting this function into Eq. (23) gives: 
2

2 2
2

1
1

0
d F
d

+ -
dF
d

+
-

-
+1

F =
ρ ρ ρ

γ
ρ ρ

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

( )
     (25) 

Again, a series solution is found involving polynomials.  The requirement that F(ρ) does not blow up as 
ρ → ∞  demands that γ  be an integer (which we’ll call n) that obeys: 
 

    n 1, 2, 3,γ = = + + +                      (26) 
 
Note that this third quantum number n dictates the allowed values of the quantum number  since for a given 

n, then  can only have values of 
 

    0,1,2, , 1n= −                           (27) 
And remember that the value of a particular  dictates the possible values of m  via Eq. (18). 
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