Linear Variational Approximation

Let us do the variational method using a linear combination of the wave functions in the form:

$$\left|\phi\right\rangle = \sum_{n=1}^{N} c_{n} \left|f_{n}\right\rangle \tag{7-48}$$

Where the c_n are the variational parameters and $|f_n\rangle$ the are arbitrary known functions. For simplicity we will assume N = 2, c_n and $|f_n\rangle$ are real.

Consider

$$\phi \, = \, c_1 f_1 \, + \, c_2 f_2$$

Then

$$\int \phi \hat{H} \phi \, d\tau = \int (c_1 f_1 + c_2 f_2) \hat{H}(c_1 f_1 + c_2 f_2) \, d\tau$$

$$= c_1^2 \int f_1 \hat{H} f_1 \, d\tau + c_1 c_2 \int f_1 \hat{H} f_2 \, d\tau + c_1 c_2 \int f_2 \hat{H} f_1 \, d\tau + c_2^2 \int f_2 \hat{H} f_2 \, d\tau$$

$$= c_1^2 H_{11} + c_1 c_2 H_{12} + c_1 c_2 H_{21} + c_2^2 H_{22}$$
(7-49)

where

$$H_{ij} = \int f_i \hat{H} f_j d\tau \tag{7-50}$$

Because \hat{H} is Hermitian, $H_{ij} = H_{ji}$, and so Eq. 7-49 becomes

$$\int \phi \hat{H} \phi \, d\tau = c_1^2 H_{11} + 2c_1 c_2 H_{12} + c_2^2 H_{22} \tag{7-51}$$

Similarly, we have

$$\int \phi^2 d\tau = c_1^2 S_{11} + 2c_1 c_2 S_{12} + c_2^2 S_{22}$$
(7-52)

where

$$S_{ij} = S_{ji} = \int \phi_i \phi_j d\tau \tag{7-53}$$

The quantities H_{ij} and S_{ij} are called *matrix elements*. By substituting Eqs. 7-51 and 7-52 into Eq. 7-29, we find

$$E(c_1, c_2) = \frac{c_1^2 H_{11} + 2c_1 c_2 H_{12} + c_2^2 H_{22}}{c_1^2 S_{11} + 2c_1 c_2 S_{12} + c_2^2 S_{22}}$$
(7-54)

where we emphasize here that E is a function of the variational parameters c_1 and c_2 .

Before differentiating $E(c_1, c_2)$ in Eq. 7-54 with respect to c_1 and c_2 , it is convenient to write Eq. 7-54 in the form

$$E(c_1, c_2)(c_1^2 S_{11} + 2c_1 c_2 S_{12} + c_2^2 S_{22}) = c_1^2 H_{11} + 2c_1 c_2 H_{12} + c_2^2 H_{22}$$
(7-55)

If we differentiate Eq. 7-55 with respect to c_1 , we find

$$(2c_1S_{11} + 2c_2S_{12})E + \frac{\partial E}{\partial c_1}(c_1^2S_{11} + 2c_1c_2S_{12} + c_2^2S_{22}) = 2c_1H_{11} + 2c_2H_{12} \quad (7-56)$$

Because we are minimizing E, $\partial E/\partial c_1 = 0$ and so Eq. 7-56 becomes

$$c_1(H_{11} - ES_{11}) + c_2(H_{12} - ES_{12}) = 0$$
(7-57)

Similarly, by differentiating $E(c_1, c_2)$ with respect to c_2 instead of c_1 , we find that

$$c_1(H_{12} - ES_{12}) + c_2(H_{22} - ES_{22}) = 0$$
(7-58)

Equations 7-57 and 7-58 constitute a pair of linear algebraic equations for c_1 and c_2 . According to the theory of linear algebraic equations, there is a nontrivial solution, that is, a solution that is not simply $c_1 = c_2 = 0$, if and only if the determinant of the coefficients vanishes or if and only if

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} \\ H_{12} - ES_{12} & H_{22} - ES_{22} \end{vmatrix} = 0$$
(7-59)

This determinant is called a *secular determinant*. When this 2×2 determinant is expanded, we obtain a quadratic equation in *E*, called the *secular equation*. The quadratic secular equation gives two values for *E*, and we take the smaller of the two solutions as our approximation for the ground-state energy.

If we use a linear combination of N functions instead of using a linear combination of two functions as we have done so far, we obtain an $N \times N$ secular determinant instead of a 2 \times 2 secular determinant:

$$\begin{array}{cccccc} H_{11} - ES_{11} & H_{21} - ES_{21} & \cdots & H_{N1} - ES_{N1} \\ H_{12} - ES_{12} & H_{22} - ES_{22} & \cdots & H_{N2} - ES_{N2} \\ \vdots & \vdots & & \vdots \\ H_{1N} - ES_{1N} & H_{2N} - ES_{2N} & \cdots & H_{NN} - ES_{NN} \end{array} \right| = 0$$
(7-61)

The secular equation associated with this secular determinant is an Nth-order polynomial in E. We choose the smallest root of the Nth-order secular equation as an approximation to the energy. The determination of the smallest root must usually be done graphically or numerically for values of N larger than two. This is actually a standard numerical problem and there are a number of packaged computer routines that do this.

Hydrogen molecule $ion(H_2^+)$

Fig. 5-4. Even and odd molecular orbitals in H_2^+ .

Fig. 5-5. Probability density for even and odd molecular orbitals in H_2^+ . (a) Distribution along the lines joining the protons; (b) and (c) distribution in a plane containing the two protons.

Example: For the Hydrogen molecule $ion(H_2^+)$, see the figure:

A coordinate system for the Hydrogen molecule ion (H_2^+)

work out the lowest energy states of the Hydrogen molecule ion (H_2^+) . Use the trial linear combination function in the form:

$$\varphi = a_1 \psi_1 + a_2 \psi_2 ; \tag{1}$$

Where

$$\psi_i = \frac{1}{\sqrt{\pi}} e^{-r_i}$$

And neglect the motion of the nucleus. Write your comments in the states.

[Hint: Write the electronic Hamiltonian \hat{H} , solve the secular determinant using the abbreviations H_{ij} , S_{ij} , where i and j take the values 1 and 2. and then calculate the integrals using the elliptical coordinate system.

Answer:

The Hamiltonian is given by (neglect the K.E. operator for the protons):

$$\hat{H} = -\frac{1}{2}\nabla_e^2 - \frac{1}{r_1} - \frac{1}{r_2} + \frac{1}{R}$$
(2)

Define the integrals:

$$H_{ij} = \langle \psi_i | H | \psi_j \rangle = H_{ji}$$

$$S_{ij} = \langle \psi_i | \psi_j \rangle = S_{ji}$$

Then the secular determinant will be:

$$\begin{vmatrix} (H_{11} - E) & (H_{12} - ES) \\ (H_{21} - ES) & (H_{22} - E) \end{vmatrix} = 0$$
(3)

which we used the standards integrals and:

$$H_{11} = \langle \psi_1 | \hat{H} | \psi_1 \rangle = H_{22};$$

$$H_{12} = \langle \psi_1 | \hat{H} | \psi_2 \rangle = H_{21};$$

$$S_{11} = \langle \psi_1 | \psi_1 \rangle = S_{22} = 1;$$

$$S_{12} = \langle \psi_1 | \psi_2 \rangle = S_{21} = S$$

From (3), one finds:

$$H_{11} - E = \pm (H_{12} - E S)$$
(4)

And we get the roots of the lowest energy states:

$$E_{+} = \frac{H_{11} + H_{12}}{1 + S}$$

$$E_{-} = \frac{H_{11} - H_{12}}{1 - S}$$
(5)

To calculate the eigen functions, we use the equation:

$$a_1(H_{11} - E) + a_2(H_{12} - SE) = 0$$
(6)

that gives (for the root E_+) $a_2 = a_1$ and:

$$p_{+} = a_1(\psi_1 + \psi_2)$$

And for the root E_{-} , we have $a_{2} = -a_{1}$ and:

$$\varphi_{-} = a_1(\psi_1 - \psi_2)$$

H.W.

a- Use
$$\langle \varphi_+ | \varphi_+ \rangle = 1$$
 to proof $a_1 = \frac{1}{\sqrt{2+2S}}$
b- Use $\langle \varphi_- | \varphi_- \rangle = 1$ to proof $a_1 = \frac{1}{\sqrt{2-2S}}$

Summary:

$$E_{+} = \frac{H_{11} + H_{12}}{1 + S}, \quad \varphi_{+} = \frac{\psi_{1} + \psi_{2}}{\sqrt{2 + 2S}}$$
 (bonding orbital)

$$E_{-} = \frac{H_{11} - H_{12}}{1 - S}, \quad \varphi_{-} = \frac{\psi_{1} - \psi_{2}}{\sqrt{2 - 2S}}$$
 (antibonding orbital)

Mathematical preliminarily

Use the H-wave equation:

$$\left(-\frac{1}{2}\nabla_{i}^{2}-\frac{1}{r_{i}}\right)\psi_{i}(r) = -\frac{1}{2}\psi_{i}(r), \qquad i=1,2$$

Then

$$H_{11} = -\frac{1}{2} + J$$

Where J is the Coulomb integral:

$$J = <\psi_1 | -\frac{1}{r_2} + \frac{1}{R} | \psi_1 >$$

And

$$H_{12} = -\frac{S}{2} + K$$

Where K is the exchange integral:

March 1, 2012

 $K = \langle \psi_1 | -\frac{1}{r_1} + \frac{1}{R} | \psi_2 \rangle$

Then

$$E_{\pm} = \frac{H_{11} \pm H_{12}}{1 \pm S} = -\frac{1}{2} + \frac{J \pm K}{1 \pm S};$$

$$\Delta E_{\pm} = E_{+} - E_{-} = \frac{J \pm K}{1 \pm S}$$

H.W. Use the Elliptic coordinate system to proof the following integrals:

$$S = (1 + R + \frac{R^2}{3})e^{-R}; \quad J = (1 + \frac{1}{R})e^{-2R}; \quad K = \frac{S}{R} - (1 + R)e^{-R}$$

H.W. Plot and discuss the following figure:

Figure 9-6. The energy as a function of internuclear separation for the H_2^+ molecular ion

that are presented in Figure 9-6. The energy ΔE_+ describes a stable molecular species whose dissociation energy is 0.065 au = 1.77 eV and whose equilibrium bond length is 2.49 au = 0.132 nm, compared to the experimental values of 0.102 au = 2.78 eV and 2.00 au = 0.106 nm, respectively. If we simply use 1s orbitals with the exponent as a variational parameter, then we obtain a dissociation energy of 0.083 au = 2.25 eV and a bond length of 2.00 au = 0.106 nm.

Although we could obtain increasingly better values of the energy and bond length of H_2^+ , we are primarily interested in the corresponding wave functions.

Types of Molecular Orbitals

Bonding Orbitals

For the linear combination of only two atomic orbitals, the bonding orbital is constructed from adding the wavefunctions together.

$$\psi_{\rm MO} = \psi_{\rm AO} \left(\mathbf{A} \right) + \psi_{\rm AO} \left(\mathbf{B} \right)$$

Thus, the probability density of the bonding orbital can be written as

$$\left|\psi_{MO}\right|^{2} = \left|\psi_{AO}\left(A\right)\right|^{2} + \left|\psi_{AO}\left(B\right)\right|^{2} + 2\psi_{AO}\left(A\right)\psi_{AO}\left(B\right)$$
$$= A^{2} + B^{2} + 2AB$$

The 2AB term is the constructive interference of the overlap of the atomic orbitals.

- The interference results in an increase of electron density between the nuclei.
- Thus, the nuclei have greater attraction to each other, via their mutual attraction to the increased electron density.

Aside: $S = \int AB d\tau$ is called **overlap integral**.

Antibonding Orbitals

For the linear combination of only two atomic orbitals, the antibonding orbital is constructed from subtracting the wavefunctions together.

$$\psi_{\rm MO} = \psi_{\rm AO} \left(A \right) - \psi_{\rm AO} \left(B \right)$$

Thus, the probability density of the bonding orbital can be written as

$$\left|\psi_{MO}\right|^{2} = \left|\psi_{AO}\left(A\right)\right|^{2} + \left|\psi_{AO}\left(B\right)\right|^{2} - 2\psi_{AO}\left(A\right)\psi_{AO}\left(B\right)$$
$$= A^{2} + B^{2} - 2AB$$

The -2AB term is the destructive interference of the overlap of the atomic orbitals.

- The interference results in a decrease of electron density between the nuclei and increase of electron density away from the nuclei.
- Thus, the nuclei are drawn away from each other.

The energy increase of the antibonding orbital is slightly higher than the energy decrease of the bonding orbital. $E_{\pm} \propto \frac{1}{1\pm S}$ (S is the overlap integral)

Example: Let
$$S = \frac{1}{4}$$

 $E_{+} \propto \frac{1}{1+S} = \frac{1}{1+\frac{1}{4}} = \frac{1}{\frac{5}{4}} = \frac{4}{5}$
 $E_{-} \propto \frac{1}{1-S} = \frac{1}{1-\frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3}$

Evaluation of two-center integrals

The overlap integral and other integrals that arise in two-center problems like H_2 , such as:

$$\Im = \int \frac{e^{-pr_A} e^{-qr_B}}{r_A r_B} d\tau, \qquad d\tau = d\tau_A d\tau_B \qquad [A9.1]$$

are called two-center integrals. Two-center integrals are most easily evaluated by using a coordinate system called **confocal elliptic** coordinates.

Elliptic coordinates.

In this coordinate system (See Figure), there are two fixed points, separated by a distance R. A point P is given by the three coordinates:

$$\xi = \frac{(r_A + r_B)}{R}, \qquad 1 \le \xi \le \infty$$

$$\eta = \frac{(r_A - r_B)}{R}, \qquad -1 \le \xi \le +1$$
[A9.2]

and the azimuthal angle ϕ $0 \le \phi \le 2\pi$, which is the angle that the (r_A, r_B, R) triangle makes about the interfocal axis (take it z-axis). Note: $r_A = \frac{R}{2}(\xi + \eta)$ and $r_B = \frac{R}{2}(\xi - \eta)$, $\xi^2 - \eta^2 = \frac{4r_A r_B}{R^2}$. The volume integral is given by:

$$d \tau_A d \tau_B = \frac{R^3}{8} \left(\xi^2 - \eta^2\right) d\xi d\eta d\phi$$
 [A9.3]

So that:

$$\mathcal{J} = \frac{R}{2} \int_{1}^{\infty} \mathrm{d}\xi \int_{-1}^{+1} \mathrm{d}\eta \int_{0}^{2\pi} \mathrm{d}\phi \,\mathrm{e}^{-a\xi - b\eta} \qquad [A9.4]$$

where

$$a = \frac{R}{2} (p + q)$$

$$b = \frac{R}{2} (p - q)$$
[A9.5]

The integral [A9.4] is now elementary and is given by

$$\mathcal{J} = \frac{\pi R}{ab} e^{-a} (e^{b} - e^{-b})$$

= $\frac{4\pi}{R} \frac{1}{p^{2} - q^{2}} (e^{-qR} - e^{-pR})$ [A9.6]

The other relevant integrals are obtained by differentiating the above result with respect to p and q. That is,

$$K = \int \frac{\mathrm{e}^{-pr_{\mathrm{A}}} \mathrm{e}^{-qr_{\mathrm{B}}}}{r_{\mathrm{A}}} \,\mathrm{d}\mathbf{r} = -\frac{\partial}{\partial q} \,\mathcal{J}$$
$$= \frac{4\pi}{R} \left[\frac{R}{p^2 - q^2} \,\mathrm{e}^{-qR} + \frac{2q}{(p^2 - q^2)^2} \,(\mathrm{e}^{-pR} - \mathrm{e}^{-qR}) \right] \qquad [A9.7]$$

and

$$L = \int e^{-pr_{A}} e^{-qr_{B}} d\mathbf{r} = -\frac{\partial}{\partial p} K$$

= $\frac{8\pi}{R(p^{2} - q^{2})^{2}} \left[R(pe^{-qR} + qe^{-pR}) + \frac{4pq}{p^{2} - q^{2}} (e^{-pR} - e^{-qR}) \right]$ [A9.8]

In the particular case p = q, we have

$$\mathcal{J} = \frac{2\pi}{p} e^{-pR}$$
[A9.9]

$$K = \frac{\pi}{p^2} (1 + pR) e^{-pR}$$
 [A9.10]

and

$$L = \frac{\pi}{p^3} \left(1 + pR + \frac{1}{3} p^2 R^2 \right) e^{-pR}$$
 [A9.11]

Elliptic coordinates

Calculate the integral $I = \int |\psi(r_1, r_2)|^2 \frac{1}{r_{12}} d\tau_1 d\tau_2$, where $\psi(r_1, r_2) = \frac{Z^3}{\pi} e^{-Z(r_1+r_2)}$ using the elliptic coordinate.

The elliptic coordinates is defined by the variables:

$$s = r_1 + r_2, \quad t = r_1 - r_2, \quad u = r_{12};$$

$$-u \le t \le u, \quad 0 \le u \le s \le \infty;$$

$$d\tau_1 d\tau_2 = \pi^2 (s^2 - t^2) u \, ds \, dt \, du$$

Then for the wave function: $\psi(r_1, r_2) = \frac{Z^{-1}}{\pi} e^{-Z(r_1+r_2)}$, we can have:

$$I = \int |\psi(r_1, r_2)|^2 \frac{1}{r_{12}} d\tau_1 d\tau_2 = \pi^2 \left(\frac{Z^3}{\pi}\right)^2 \int_0^\infty ds \int_0^s du \int_{-u}^u e^{-2Zs} \left(\frac{s^2 - t^2}{u}\right) dt$$
$$= \frac{5}{8}Z$$