KING FAHD UNIVERSITY of PETROLIUM and MINERALS Physics Department Atomic and Molecular Physics (Phys-551) Spring 2014

In the exam:

- **1- Use atomic units**
- **2- Write your answer on one side of the answer sheet.**
- **3- Each question answer should be in separate sheets.**
- **4-** For the spin states, define your state as $|\uparrow \uparrow \rangle$, or $|+\frac{1}{2}+\frac{1}{2}|$ $+\frac{1}{2}+\frac{1}{2}$ or $|\alpha\alpha\rangle$, for two **parallel upward spin particles.**
- *5-* **All problems have equal weight. So, it is up to you to start with the simple one.**
- *6- If your answer is yes, or no, you have to give the reason, or reasons.*

1- Is the helium monatomic gas? **Yes**

Helium molecule (He₂): has four electrons, two in the bonding state σ_{ϱ} is and two in the antibonding state σ_u^* 1s ; that is, $(\sigma_s^{}\, {\rm ls})^2 \left(\sigma_u^*{\rm 1s}\right)^2$

The bond order for the helium molecule is $\frac{2-2}{2} = 0$ 2 $\frac{-2}{2}$ = 0, i.e. **no stable configuration is produced**, so He₂ does not exist. *This explains why helium is a monatomic gas*.

2- Is the function $\psi(r_1, r_2) = \phi_{100}(\vec{r_1}) \phi_{100}(\vec{r_2}) \chi_{\text{triplet}}$ correct to describe the ground state of Heatom? **No** $[\chi_{\text{triplet}}]$ is the two-particle spin triplet state,]

 $\psi(r_1, r_2)$ should be antisymmetric, but both functions $\phi_{100}(\vec{r_1}) \phi_{100}(\vec{r_2})$ and χ_{triplet} are symmetric.

3- Is Zeeman's effect can be seen for the two electrons in the s-state? **No**

For two electrons in the s-state, one finds $m_s = 0$ and $m_f = 0$, so $\Delta E \propto (m_f + 2m_s) = 0$

4- Is the uncouple function $\left|\ell m_{\ell}\right\rangle\left|m_{s}\right\rangle$ suitable for the perturbation L.S \rightarrow ? **No** $\ln \ln \ln \left(\frac{2m_s}{s} \right)$ will not diagonalizes the term $\overline{L}.\overline{S}$ \rightarrow .

5- The following figure shows the H-molecule, see; write down the **full** Hamiltonian of the system.

Schematic diagram of hydrogen molecule

Answer:

$$
\hat{H} = -\frac{1}{2}\nabla_A^2 - \frac{1}{2}\nabla_B^2 + \hat{H}(1) + \hat{H}(2) + \frac{1}{r_{12}} + \frac{1}{R}
$$

where

$$
\hat{H}(i) = -\frac{1}{2}\nabla_e^2(i) - \frac{1}{r_{Ai}} - \frac{1}{r_{Bi}}, \qquad i = 1, 2
$$

6- Use the spin wave function for an electron $\psi = a \alpha + b \beta$, where *a* and *b* are constants, to complete the following equations:

$$
\hat{S}^2 \psi = \frac{1}{2} \left(\frac{1}{2} + 1 \right) \psi = \frac{3}{4} \psi
$$

$$
\hat{S}_z^2\psi=\frac{1}{4}\psi
$$

7- Classify each of these functions as symmetric (S), antisymmetric (A), or neither symmetric nor antisymmetric (N).

8- Two electrons, each with spin $\frac{1}{2}$, are in s-state. If the perturbation term is:

$$
\hat{H} = A \hat{S}_1 \hat{S}_2
$$

where *A* is positive constant:

- a- Calculate the energy eigenvalue, or eigenvalues, of the perturbation.
- b- Draw a diagram showing how the energy levels of \hat{H} ' split.

Answer: Calculate the energy eigenvalue, or eigenvalues, of the perturbation.

$$
s_{1} = \frac{1}{2}, s_{2} = \frac{1}{2} \Rightarrow s = 0, 1
$$
\n
$$
\hat{S}_{1} \cdot \hat{S}_{2} = \frac{1}{2} \left[\hat{S}^{2} - \hat{S}_{1}^{2} - \hat{S}_{2}^{2} \right]
$$
\n
$$
E_{1} = \langle SM_{s} | K\hat{S}_{1} \cdot \hat{S}_{2} | SM_{s} \rangle = \frac{A}{2} \left[s(s+1) - \frac{1}{2}(\frac{1}{2}+1) - \frac{1}{2}(\frac{1}{2}+1) \right]
$$
\n
$$
= \frac{A}{2} \left[s(s+1) - \frac{1}{2}(\frac{1}{2}+1) - \frac{1}{2}(\frac{1}{2}+1) \right] = \frac{K}{2} \left[s(s+1) - \frac{3}{2} \right]
$$
\n
$$
= A \begin{cases} \frac{1}{4} & \text{for triplet} \\ -\frac{3}{4} & \text{for singlet} \end{cases}
$$

9- The following figure is the transitions of anomalous Zeeman effect for of unknown states *A* and

Answer:

Answer:
$$
\begin{pmatrix} A \\ B \end{pmatrix} \equiv \begin{pmatrix} {}^3S_1 \\ {}^3P_0 \end{pmatrix} \equiv \begin{pmatrix} {}^1P_1 \\ {}^1S_0 \end{pmatrix}
$$

10- A particle of spin $\frac{1}{1}$ 2 is in a p-sate of orbital angular momentum $(l = 1)$. Consider its

perturbed Hamiltonian is given by:

$$
\hat{H} = a + b\hat{L}\hat{S} + c\hat{L}^2
$$

where *a*, *b*, and *c* are constants. Find the energy values for each of the different states of the total angular momentum *J* . (Express your answer in terms of *a*, *b*, and *c*).

Answer:

$$
\hat{H} = a + b\hat{L}.\hat{S} + c\hat{L}^{2} = a + b \frac{(\hat{J}^{2} - \hat{L}^{2} - \hat{S}^{2})}{2} + c\hat{L}^{2}
$$
\n
$$
J = \frac{1}{2}, \frac{3}{2}
$$
\n
$$
\vec{L}.\vec{S} \mid \ell, s, j, m_{j} \rangle = \frac{1}{2} (\hat{J}^{2} - \hat{L}^{2} - \hat{S}^{2}) \mid \ell, s, j, m_{j} \rangle
$$
\n
$$
= \frac{1}{2} [\hat{J}(\hat{J} + 1) - \ell(\ell + 1) - s(s + 1)] \mid \ell, s, j, m_{j} \rangle
$$

$$
\langle \hat{L}^2 \rangle = \ell(\ell+1)
$$

\n
$$
\langle \vec{L} \cdot \vec{S} \rangle = \langle l, s, j, m_j | \vec{L} \cdot \vec{S} | l, s, j, m_j \rangle = \frac{\hbar^2}{2} \left[j(j+1) - l(l+1) - \frac{3}{4} \right]
$$

\n
$$
\langle \hat{H} \rangle = a + b \langle \hat{L} \cdot \vec{S} \rangle + c \langle \hat{L}^2 \rangle = a + b \frac{1}{2} \left[j(j+1) - \ell(\ell+1) - \frac{3}{4} \right] + c \ell(\ell+1)
$$

\n
$$
E_{j=1/2} = \langle \hat{H} \rangle_{j=1/2} = a + b \frac{1}{2} \left[\frac{1}{2} (\frac{1}{2} + 1) - 1(1 + 1) - \frac{3}{4} \right] + c \left[1 + 1 \right]
$$

\n
$$
= a + \frac{b}{2} \left[-2 \right] + 2c = a - b + 2c
$$

\n
$$
E_{j=3/2} = \langle \hat{H} \rangle_{j=3/2} = a + b \frac{1}{2} \left[\frac{3}{2} (\frac{3}{2} + 1) - 1(1 + 1) - \frac{3}{4} \right] + c \left[1 + 1 \right]
$$

\n
$$
= a + \frac{b}{2} \left[1 \right] + 2c = a + \frac{b}{2} + 2c
$$

11- For an electron in P-state, calculate:

$$
\vec{L} \cdot \vec{S} \Big| m_{\ell} = 0, m_{s} = \frac{1}{2} \Big\rangle, \text{ hence find } \Big\langle 0, \frac{1}{2} \Big| \vec{L} \cdot \vec{S} \Big| 0, \frac{1}{2} \Big\rangle \text{ and } \Big\langle 1, -\frac{1}{2} \Big| \vec{L} \cdot \vec{S} \Big| 0, \frac{1}{2} \Big\rangle
$$

Answer:

$$
\vec{L} \cdot \vec{S} \left| 0, \frac{1}{2} \right\rangle = \hat{L}_z \hat{S}_z \left| 0, \frac{1}{2} \right\rangle + \frac{1}{2} \left(\hat{L}_+ \hat{S}_- + \hat{L}_- \hat{S}_+ \right) \left| 0, \frac{1}{2} \right\rangle
$$
\n
$$
\hat{L}_z \hat{S}_z \left| 0, \frac{1}{2} \right\rangle = \hat{L}_z \left(\hat{S}_z \left| 0, \frac{1}{2} \right\rangle \right) = \frac{1}{2} \left(\hat{L}_z \left| 0, \frac{3}{2} \right\rangle \right) = \frac{1}{2} \times 0 \times \left| 1, \frac{3}{2} \right\rangle = 0,
$$
\n
$$
\frac{1}{2} \left(\hat{L}_+ \hat{S}_- \right) \left| 0, \frac{1}{2} \right\rangle = \frac{1}{2} \hat{L}_+ \left(\hat{S}_- \left| 0, \frac{1}{2} \right\rangle \right) = \sqrt{\frac{1}{2} (\frac{1}{2} + 1) - \frac{1}{2} (\frac{1}{2} - 1)} \left(\frac{1}{2} \hat{L}_+ \left| 0, -\frac{1}{2} \right\rangle \right) = \frac{1}{2} \hat{L}_+ \left| 0, -\frac{1}{2} \right\rangle
$$
\n
$$
= \frac{1}{2} \sqrt{1(1 + 1) - 0(0 + 1)} \left| 1, -\frac{1}{2} \right\rangle = \frac{1}{2} \sqrt{2} \left| 1, -\frac{1}{2} \right\rangle,
$$
\n
$$
\frac{1}{2} \left(\hat{L}_- \hat{S}_+ \right) \left| 0, \frac{1}{2} \right\rangle = \frac{1}{2} \sqrt{1(1 + 1) - 0(0 - 1)} \sqrt{\frac{1}{2} (\frac{1}{2} + 1) - \frac{1}{2} (\frac{1}{2} + 1)} \left| -1, \frac{3}{2} \right\rangle = 0
$$

Then:

$$
\langle m_l, m_s | \vec{\mathbf{L}} \cdot \vec{\mathbf{S}} | 0, \frac{1}{2} \rangle = \frac{1}{\sqrt{2}} \langle m_l, m_s | 1, -\frac{1}{2} \rangle = \frac{1}{\sqrt{2}} \delta_{m_l, 1} \delta_{m_s, -\frac{1}{2}}
$$

$$
\langle 0, \frac{1}{2} | \vec{\mathbf{L}} \cdot \vec{\mathbf{S}} | 0, \frac{1}{2} \rangle = 0,
$$

$$
\langle 1, -\frac{1}{2} | \vec{\mathbf{L}} \cdot \vec{\mathbf{S}} | 0, \frac{1}{2} \rangle = \frac{1}{\sqrt{2}}
$$

12- For the coupling of two non equivalent electrons $np \, n'p$, the relation between the coupled and uncoupled for the upper states are given by:

$$
|22\rangle = |11\rangle
$$

$$
|21\rangle = \frac{1}{\sqrt{2}}|10\rangle + \frac{1}{\sqrt{2}}|01\rangle
$$

Calculate the next lower state.

Answer: $|20\rangle = \frac{1}{\sqrt{2}}|1-1\rangle + \sqrt{\frac{2}{2}}|00\rangle + \frac{1}{\sqrt{2}}|-11\rangle$ 6^{17} $\sqrt{3}$ $\sqrt{6}$ $=\frac{1}{\sqrt{2}}|1-1\rangle+\sqrt{\frac{2}{2}}|00\rangle+\frac{1}{\sqrt{2}}|-\frac{2}{2}\rangle$

13- An electron in the state $|n,\ell,s,j,m_j\rangle$ with $n=5$. Use this information to:

- a. Write down the ℓ values **Answer:** $\ell = 0.1, 2, 3, 4$
	- b. Write down the highest state in the couple representation, i.e. $\left|n,\ell,s,j,m_j\right\rangle$.

Answer:
$$
\left|\ell, s, j, m_j\right\rangle = \left|4, \frac{1}{2}, \frac{9}{2}, \frac{9}{2}\right\rangle
$$
.

c. Write down the highest state in the uncouple representation, i.e. $\left|\ell,m_{\ell}, s, m_{s}\right\rangle$.

Answer:
$$
|\ell, m_{\ell}, s, m_s\rangle = \left|4, 4, \frac{1}{2}, \frac{1}{2}\right\rangle
$$
.

d. Use the lowering operator technique to calculate the next couple representation of the results in part a in terms of the uncouple representation.

Answer:
$$
\left| 4, \frac{1}{2}, \frac{9}{2}, \frac{7}{2} \right\rangle = \frac{1}{3} \left| 4, 4, \frac{1}{2}, -\frac{1}{2} \right\rangle + \frac{\sqrt{8}}{3} \left| 4, 3, \frac{1}{2}, \frac{1}{2} \right\rangle.
$$

14- For two identical fermions in different states designated by $n\ell$ and $n'\ell'$, the expectation term of 12 1 $\frac{1}{r_{12}}$ is given by:

$$
\left\langle \frac{1}{r_{12}} \right\rangle = J \pm K
$$

Write J and K in terms of the wave functions of the two particles. **Answer:**

$$
J = \iint d\,\tau_1 d\,\tau_2 \, \frac{|\psi_{\ell}(1)|^2 |\psi_{\ell}(2)|^2}{r_{12}}, \qquad \qquad K = \iint d\,\tau_1 d\,\tau_2 \, \psi_{\ell}^*(1) \psi_{\ell}(1) \frac{1}{r_{12}} \psi_{\ell}^*(2) \psi_{\ell}(2)
$$

14- Assuming the $\hat{L}.\hat{S}$ interaction to be much stronger than the interaction with an external magnetic field, calculate the anomalous Zeeman splitting of the lowest states

 $({}^2S_{1/2}$, ${}^2P_{1/2}$, ${}^2P_{3/2}$) in Hydrogen for a field of 0.05 T.

Answer:

$$
\Delta E = H_m = \beta(\vec{L} + 2\vec{S}) \cdot \vec{B} = \beta g_J m_J B = \beta \left\{ 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \right\} m_J B
$$

= $\left(5.788 \times 10^{-5} \frac{eV}{T} \right) g_J (0.05 T) m_J$

With

$$
g_J = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}
$$

