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Two-dimensional Ising model 
Reminder: The standard 2D Ising model consists of an n n× square lattice, at each site i of which is 
a spin 1is = ± , with partition function (in the absence of an external field) 
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Z K N e + + +=∑∑ ∑                                         (7.28) 

Mean-field theory approximation gives a second-order phase transition in all dimensions D , at 
1

2c D
Jβ =                     2B ck T D J⇒ =    

Also for the two-dimensional Ising model there is an exact solution, due to Onsager (1944), which 
is, however, considerably more complicated than for the one-dimensional system. The partition 
function is given by 

2cosh(2 )
NIZ K e⎡ ⎤= ⎣ ⎦                                      (7.29) 

with  

 
and the system exhibits spontaneous magnetization below a critical temperature 

                (7.32) 
For temperatures just below the critical point, 

 
consistently with a second-order phase transition. 

 
Fig.7.3: Decimation scheme for two-dimensional Ising model: Every second site is integrated yielding an 

effective coupling among all surrounding spins. 
 
Now we turn to the renormalization group treatment. There are various decimation schemes 

we could imagine. In analogy to the one-dimensional case we divide the square lattice into two 
sublattices as shown in Fig. 7.3: The white sites are integrated out. We take the plaquette indicated 
in the figure. Spins 1, 2, 3, and 4 encircle spin 0. The latter, spin 0, couples through nearest 
neighbor interaction to the former four spins. Take: 

0 0 1 2 3 4( )H J s s s s s= − + + +  
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Thus, our decimation works as follows: 

 
We reformulate the partition function for the remaining spin degrees of freedom 
 

 
Going through the space of spin configurations we find new effective interactions between the four 
surrounding spins with the relation2 

 
where  

0- '
0K  connected with the reduced free energy,  

1- '
1K   denote nearest  spin-spin interaction ,  

2- '
2K  denote next-nearest-neighbor spin-spin interaction, and  

3- '
3K  gives a four-spin interaction on the plaquette.  

Note that the neighboring plaquettes contribute to the nearest-neighbor interaction, e.g. summing in 
Fig. 7.3 over '

0s  on site 0 ' , yields another interaction between 1s  and 2s . Therefore we have to 
modify the second equation in (7.38) by multiplying by a factor 2, 

'
1

1 ln[cosh(4 )]
4

K K=                                                    (7.39) 
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Unlike in the Ising chain we end up here with a different coupling pattern than we started. More 
spins are coupled on a wider range. Repeating the decimation procedure would even further enlarge 
the interaction range and complexity. This is not a problem in principle. However, in order to have a 
more practical iterative procedure we have to make an approximation. We restrict ourselves to the 
nearest neighbor interactions which would give a well-defined iterative procedure. But simply 
ignoring the other couplings which additionally help to align the spins would lead to an 
oversimplified behavior and would actually give no phase transition. Thus we have to add the other 
couplings in some way to the nearest-neighbor coupling. It can be shown that the four-spin 
interaction is small and not important close to the transition point and we concentrate on '

1K  and 
'
2K  only. Let us define the effective nearest-neighbor in a way to give the same ground state energy 

as both couplings. Each site has four nearest- and four next-nearest neighbors, which yield the 
energy per site for full spin alignment 

 
We introduce an approximation in which we neglect '

3K  and replace '
2K by a modified, 

effective nearest-neighbor coupling constant ( )' ' '
1 2,K K K that takes into account next-nearest 

neighbors; one gets new renormalized nearest-neighbor coupling 
' ' '

1 2
3 ln[cosh(4 )]
8

K K K K= + =                                            (7.41) 

which now can be iterated and has:  
1- a stable (trivial-solution) fixed points at 0K =  and K = ∞ , and  
2- an (nontrivial) unstable fixed point at 

0.50698cK =                                                         (7.42) 
The (nontrivial) unstable fixed point corresponds now to a finite-temperature phase transition at 

c cK Jβ= 1.97B c
c

Jk T J
K

⇒ = = which is lower than the mean field result 4B ck T J= but 

relatively inaccurate compared to the exact result of 2.27 J . 
 

 

 
 
Fig.7.4: Renormalization group flow of coupling constant; the unstable fixed point cK  represents the critical point. On 

the left hand side, the flow leads to the stable fixed point 0K = corresponding to the uncoupled spins: disorder phase 
(paramagnetic). The right hand side flows to the stable fixed point K = ∞ , where system is ordered (ferromagnetic). 

 
It is now interesting to consider the exponents which we had discussed above. Thus we take into 
account that in our decimation scheme 2b =  and calculate 
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Note that: 

' 3 ln[cosh(4 )]
8

3 3' tanh(4 ) tanh(4 0.507) 1.5 0.966 1.449
2 2c

c

K K

K K

dK K dK dK dK dK
=

=

⇒ = = × = × =
       (7.43) 

 

 

 
 

The decimation method used here is only one among many which could be imagined and 
have been used. Unfortunately, for practice reasons approximations had to be made so that the 
results are only of qualitative value. Nevertheless these results demonstrate that non-trivial 
properties appear in the critical region close to the second order phase transition. 
Other decimations schemes can be used. Decimations in real space are only one type of method; 
know under the name of block spin method. Alternatively, also decimations schemes in momentum 
space can be used. Depending on the problem and the purpose different methods are more useful. 
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Higher and more terms may be worse results !!!!!!!!: (Vilfan) 
As we noticed; after decimation we get a more complicated Hamiltonian: 

( )
( ) ( )

' '
0 1

' '
2 3

' i x i y i y i x i x i y i y i x

i x i x i y i y i x i y i y i x

H K K S S S S S S S S

K S S S S K S S S S

+ + + − − − − +

+ − + − + + − −

⎡= − + + + +⎣
⎤+ + + ⎦

∑
                           (1) 

 
where '

1K  is the new NN interaction, '
2K  the new NNN (next nearest neighbors) interaction, Q0 the 

four-spin interaction, and '
0K  a constant. Only with the Hamiltonian of this form, it is possible to 

satisfy the condition 'Z Z= for arbitrary configurations of S±x,y. Although we started with only NN 
interactions, decimation generated NNN interaction and even four-spin interactions. So, we have to 
start from the beginning again with a more complicated Hamiltonian which includes all these 
interactions. In the following we shall neglect 3K  and assume that 2K  is small. In this case we 
obtain the following approximate recursion relations: 
 

' 2
1 1 2

' 2
2 1

2K K K
K K

≈ +

≈
                                                                   (2) 

 

 
Figure 2: The renormalized interaction after decimation is 2

1 22K K+ . 
 

In fact, these relations could be guessed immediately, see Fig. 2. The new nearest neighbors are the 
previous NNN, therefore the term L in the first equation. Besides, they were connected by two pairs 
of consecutive bonds, this brings 2

12K . In the second equation, the new next nearest neighbors 
(NNN) are connected by two consecutive NN bonds on the old lattice - each of them contributing a 
factor 2K . 

The recursion relations (2) have: 
1- two trivial fixed points,  

(a) ( ) ( )* *
1 2, 0,0K K =  corresponds to the infinite-temperature, paramagnetic fixed point, 

(b) ( ) ( )* *
1 2, ,K K = ∞ ∞  corresponds to zero-temperature, ferromagnetic fixed point. 

2- and  one non-trivial fixed point at ( ) ( )* *
1 2

1 1,3 9,K K = , corresponds to the critical point of the 

system 
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Note: For no-trivial point, at the fixed points where we have * *
2 1K K≈ , which implies: 

* *2 *2
1 1 1

* * *
1 1 1

2
1(1 3 ) 0 0,
3

K K K

K K K

≈ +

⎛ ⎞⇒ − = ⇒ = ⎜ ⎟
⎝ ⎠

 

Then the second equation implies: 
2

* *2
2 1

1 1
3 9

K K ⎛ ⎞≈ = =⎜ ⎟
⎝ ⎠

 

Example: For the d = 2 Ising model, µ1 = K1 and µ2 = K2, and after linearization the equations 
' 2 ' 2

1 1 2 2 12 ,K K K K K≈ + ≈  become 
' *

1 1 1 2

' *
2 1 1

4 ;
2

K K K K
K K K

δ δ δ

δ δ

= +

=
                                                   (4.103) 

For the non-trivial fixed point at ( ) ( )* *
1 2

1 1,3 9,K K = , the RG transformation matrix is: 

 
The eigenvalues of  are: 

 
and the eigenvectors: 

 
(Question: what does negative 2λ  mean physically, how does the system behave under successive 
RG transformations if λ  is negative? λ  > 0 means relevant, and λ  < 0 means irrelevant. 
) The corresponding critical exponents are: 

 
one is positive and the other one is negative. 

1

1 1 0.64
1.57x

ν = = =   (it is worse),         
1

2 2 2(0.62) 0.76d
x

α = − = − =  (again it is worse) 
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