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Properties of the density operator

Consider a general case of a system which can be in either one of a set of normalized, but
not necessarily orthogonal, state|z,//i > Suppose a quantum mechanical average or the expectation

value of an operator A when the system is definitely in the state |Wi ) is given by A, , where

=)~ i)

The statistical or ensemble average which is seen to be a weighted average of <A > taken over
all the states that the system may occupy is defined by:

(R)=5. 0 =% i)

In which p, is the probability of the system being in the normalized state |1//i> and the sum is

A

A

A

A

taken over all the states that are accessible to the system. The probability p, evidently satisfies
O<p, <l  >p =1 > p’<lL

We now introduce the density operator, which is in some sense the “optimal” specification of the
system. The density operator is defined as:

/3=zi P |‘//i><‘//i |
Suppose the set |gon>forms a basis, complete set, of the Hilbert space of the system under

consideration. Then the expectation value of the operator A can be rewritten after inserting the
unit operator 1= |, )(¢, | as
Vi >

<A>:Zi Pi <‘//i A ‘//i>zzi Pi <‘//i ‘zn|¢n><¢n IA:
=3 (o [Zop v )i Ao )= 3, (00 [5A] 1) = Tr(5A)

Here we have used the trace operator, Tr which adds all diagonal terms of an operator. For a

general operator
TrQ =Zn<¢n Q con>

The trace is independent of the basis used- it is invariant under a basis transformation. Another
property of the trace is:

Tr|m){x|=(nx)
Which is easily verified by writing out the trace with respect to a basis ¢, .

In general the density operator is defined as:
/A’=Z|‘/’i>pi (wi -
If a system is in a well-defined quantum state|z//> , We say that the system is in a pure state. In
pure state there is just one p, which is equal to unity and all the rest are zero. In that case:

p=lw)ivl,
Which is the projection operator into that state, and we will have the conditions:
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<A>i = <A> for pure syatem

=5,
p=p
TH(3) = Tr(5") =1

Tr(pA)=(A),
Examples: check all the properties of the density operator in the following examples.

1- A completely polarized beam with state o = (S, +)
Ans: In the basis set of « and £, the density matrix is:

. 1 10 - -
poRel=(gJa 0[5 o) = AT
Also:

. L 1 0) 40 1 01
(s,)=Tr(ps,)=Tr [o OX’Z(l OJ]:ZTr(O OJ:O
. . 1 0) 4(0 —i
(5,)=Te(p5,)=Tr[[2 040 )

. - 1 0)al1l O h
(,)=Tr(ps,)=Tr (0 Oxg[o _J -2

as one would expect.

H.W. Find p for a completely polarized beam with state g =(S, —), and calculate (s, ), <sy>

and (s, ).
p=l1(3 Jo 9-(g 3]

Ans:
H.W. For the state |y/) =a,|a)+a,| ), with [a|" +|a,|" =1. prove that the density matrix can
be given by:

p=(ala)+a,|p))(al (a|+a; ()

[Iailz aa; J
a8, ]

Which indicates that the diagonal elements |a1|2 and |a2|2 are just the probabilities that the
electron is in the state « or £, respectively.
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2- A completely polarized beam with state (sy +) = Ulg(“ + )= %{jlj

Ans:
p=rs(atp)(a'£p")
:;(ilJ(l ﬂ):;[; illj = Tr(p)=Tr(p%) =1

3- Un-polarized beam with state (50%) %0‘ +%ﬂ - ;[ﬂ
Ans:

p=(el)+ ()35 o o+4(S )0 v

(1 0]:21 = Tr(p) = Tr(p?)

Another way of calculating p,,
Pu=(+ P =3 ()45 ) )
P = (+1 1) = )+ 5 (1) =

o PNk

Now, case B:  50% in the state ‘T> 50% ‘¢> The density matrix is
~ 1 1
=5 M3

:%@(1 0)+%®(0 1):%((1) cl)j

o ) ) _ Tr[)sleﬁTraxzo, o
This is proportional to the unit matrix, so 22 and similarly for sy and s,,

. . . N2 14 3 . .
since the Pauli o~-matrices are all traceless. Note also that # =2P 7 P | as is true for all mixed
states.

)= ()+14)

Finally, let us consider a 50%:50% mixed state of spins in 2
1
L= 25(1-4)

It is easy to check that

, “up” along the

X-axis, and , “down” in the x-direction.
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_1(1/2 172 +1 /2 -1/2) 1(1 0
212 12) 2\-12 w2) 20 1)
Which is just the identity matrix divided by 2.
Check if we can put:

1(1 0) 1
2lp 1) 2

Which is 50% of (S, +) and 50% of (S, —). What is this means to us? It means that both

formulations describe a state about which we know nothing-we are in state of total ignorance, the
spins are completely random, all directions are equally likely. The density matrix describing such
a state can not depend on the direction we choose for our axis. Note that this is not the only
representation.

1
+_

pP= 5

Tt

L,

:%(Sx +)+%(Sx _)

NP N
N~ NP
N = N

NP N e

This is exactly the same density matrix we found for 50% in the state ‘T> 50% “L> I The
reason is that both formulations describe a state about which we know nothing—we are in a state
of total ignorance, the spins are completely random, all directions are equally likely. The density
matrix describing such a state cannot depend on the direction we choose for our axes.

Another two-state quantum system that can be analyzed in the same way is the polarization state
of a beam of light, the basis states being polarization in the x-direction and polarization in the y-
direction, for a beam traveling parallel to the z-axis. Ordinary unpolarized light corresponds to
the random mixed state, with the same density matrix as in the last example above.

H.W. If the density operator for the spin Y2 particles is:
P =C,I+CS, +C,S, +Cg,

with 1 is the unit 2x 2 matrix and c, are constants, prove that:
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and & are the Pauli’s matrices.
Example: Consider a pure ensemble of spin ¥ particles polarized along the vector

= 1 1
P=(5.05V9
a- Calculate the density matrix for the ensemble and check that Tr(p) = Tr(p%) =1.
b- Calculate the ensemble average (s, ) and (s, ) using the density matrix.

o B 1 1
Answer: for the polarization vector P = (E,O,E\/ﬁ) , we have

a- with p = %[F&.ﬁ] = %[i+&x P +6,P,+6, PZJ , then
1 1 1 1
A:1[1 O+§ O+§\/§ 0 :11+§\/§ 5
2lo 1 1 1 2 1 1
e A Ay 1 1+%\/§ % A A
b- Will find p = p? =5 1 . _|and Tr(p) =Tr(p?) =1.
7 1P
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Statistics of various ensembles

1-

The microcanonical ensemble:- Systems with fixed N andV , and an energy lying
within the interval (E —%A, E +%A), where A << E . The total number of distinct
microstates accessible to a system is I'(E,V ,N ;A). From the equal a priori probabilities
3 1

" I(E,V,N:A)

Thus all the states in the microcanonical ensemble appear with the same weight which

implies that
/A)zzi Pi |‘//i ><Wi |

with the discrete eigenvalues (E;) lying within the range E —%A <E, <E +%A .

- 1
(’O)mn :Zi <V/m |V/I > pi <l//| |Wn>:Zi ﬁé‘mi in — pn5mn

P«

with
b, = %, for each of the accessible states
0 for all other states
The entropy
S =k, InT(E)

where T'(E) is now calculated quantum mechanically, taking into account the

indistinguishability of the particles, which implies no paradox, such as Gibbs' paradox.
Also,as T — 0, system goes to the ground state which gives I'(E) =1 i.e. S =0 (third

law of thermodynamics)

2
1 pure case, p =p
P(E)= ,
>1 mixed case (degenrate), p = p“~,S #0

The microcanonical ensemble:- Systems with fixed N ,V and T and different energy E .
The probability that a system, chosen at random from the ensemble, possesses an energy

E, is determined by Boltzmaan factor e “**, and the density matrix in the energy
representation is therefore taken as

() = PaOumn
with

pn: ’ nzoillzy"'

Thus density operator in the canonical ensemble could be written as:

WAL AR WAL AR WAL

e "
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The expectation value <A:>N of a physical quantity A is now given by
. . Tr(Ae"
), (ia) e

the suffix N here emphasizes he fact that the averaging has been done over an ensemble
with N fixed.

- 1 0 -
Example: If H =—u-B=-uB&, =—uB (0 1] find (5, ).

Answer:
e =e % ~14 (5B)G, + (Y67 + g (PuBY 62+

3[04 30808 4+ 6, (38 + 3 Y+

=1cosh(guB)+ &, sinh(suB)

_ (cosh(puB) 0 .\ sinh(BuB) 0 (e 0
B 0 cosh(BuB) 0 —sinh(guB)) | 0 e /"

1 0
Note that: With the definition &, :(O lj , one finds
~2 ~4 ~6 l 0 ~
7 = z = z /= T :1’
01
~3 _ A5 _ A7 ~
z = z = z == GZ !

then
Trie ") =e”® +e® =2cosh(BuB)

. e 1 e 0
- = — =
P Tre ") 2cosh(puB)| 0 e /®

A\ Any 1 o PuB 0 : 1 0
< Z>Tr('002)Zcosh(ﬁyB)Tr[( 0 e—ﬂﬂB](o —JJ

1 e /H® 0
=—Tr
2 cosh(BuB) 0 —e/®
_ e e 2sinh(BuB)
2cosh(puB) 2cosh(puB)

= tanh(fuB)
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e Examples in spin-1/2 system:

o= 11| HHEES
3 el
RORDLUR), B ek
PR J2 U
3 1 0
p == X+ D+ Xt 514X (5 o) P
SR IRVATS 3 1) pestey
p==—|TXT{+—=|{ X! [L " i K 2o
ni st i

e In a given basis, the diagonal elements
are always the probabilities to be in the
corresponding states:

e The off diagonals are a measure of the
‘coherence’ between any two of the basis

states.

1l 1 | 3 1 El

2 2 L0 4 4 4 0

1l 1 1 1 1

2 2 00 4 4 0 4
. (

vl A_ put L Or-TV My '1"':"%""‘( Y

P l ?w.huo’\} P e

— Coherence is maximized when:

ﬁ)HH? F)}?Hi’ = F)HHH F)Hf}'
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As an example consider the wavefunction for a spin that is oriented at an angle 6 and ¢ in

olar coordinates: N N
p U = ('lﬁJH(;}F H""x'j|l{+1f;2 = +5111{3}€f.J,«’2|“_l!ﬁ2 >

The density matrix for this state is: - cos?(0/2) cos(0/2)sin(0/2)e"®
o cos(0/2)sin(0/2)et? sin?(0/2)
The expectation value for S, is: < 5, >= Trace(pS;)
S cos*(0/2)  cos(0/2)sin(0/2)e”'?| A [0 1
Pox =" Ncos(0/2)sin(8/2)et @ sin2(0/2) 2 (1 0
B h c’os{@ﬁ)55??{8/2)6-_”9 (:052(9/2}
= sin?(6/2) cos(6/2)sin(0/2)et®
<8, > = Trace(pS.) = I; {fosgsmge_m -+ (f()sg.s-é'ragﬁ'“‘"}

h g . 0 |e¥+et? i o
— 2c08—8in— | — | = = 2cos—sin—coso
2 2 2 2 2) 2 2

If the spin is oriented such that its magnetic moment is along the x-axis, then 6 = 90, and

¢ = 0. The expectation value of S, is then, _ S, >= }_,2 _'L _ ﬁ as expected:
27 V2v2 2

Calculation of the expectation value of S, for this example yields <Sy >= O.
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The population difference at thermal equilibrium is given by the Boltzmann distribution:
~E/kT
e

Using the Boltzmann distribution as an opéem‘ror gives the desired form of the density

matrix. A single element of the density matrix is: e /KT
Pp-n. =< “‘PI Z |u”- >
And the entire density matrix is:
p 1 < H'||F H/;'I |’H| > < U ‘F H/k‘! |?12 > i B_Elﬂ\iT < ’ll]_|'lf£] > e_E2/F“T o 'U,]|i‘_£2 >
Z | < ug|le M/ |4y > < up|e” T |y > Z e BT coyluy > e F AT <oyglug >
1 [e=B /AT 1 [ethwo/2kT 0
-7 [ 0 e‘E’-‘/’“] T Z 0 g~ hwo/2kT

Expanding the exponential as a sem’es and taking only the first term (e® # 1 + a) we find:

11—}-":, 1‘-‘-}0 0
rmz[00 D)zl ezl Y e

Where ~ = hw,/2kT.

One can see that this matrix is composed of the unit matrix plus S,. Since the unit
matrix has no effect on any of the common observables we can ignore it 1. Furthermore,
since we are only interested in the changes in the amplitudes and the time evolution of the
individual elements of the density matrix, we can also ignore constants. Therefore, the
density operator for a system under thermal equilibrium can be written:

Al 1 © ,
3o ==

To simplify the calculations even further, can be removed from the expression using the
following representation of angular momentum operators: Thus, p, is equal to the matrix I,.

S 101 S, 1o — S, 1]1 o0

Lo =

10



