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Properties of the density operator 
 

Consider a general case of a system which can be in either one of a set of normalized, but 
not necessarily orthogonal, state iψ . Suppose a quantum mechanical average or the expectation 

value of an operator A when the system is definitely in the state iψ  is given by iA , where  
ˆ ˆ

i i ii
A A Aψ ψ= = . 

The statistical or ensemble average which is seen to be a weighted average of ˆ
i

A  taken over 

all the states that the system may occupy is defined by: 
ˆ ˆ .i i i i ii i

A p A p Aψ ψ= =∑ ∑  

In which ip  is the probability of the system being in the normalized state iψ  and the sum is 
taken over all the states that are accessible to the system. The probability ip  evidently satisfies 

20 1, 1, 1i i i
i i

p p p≤ ≤ = ≤∑ ∑ . 

We now introduce the density operator, which is in some sense the “optimal” specification of the 
system. The density operator is defined as: 

ˆ i i ii
pρ ψ ψ=∑  

Suppose the set nϕ forms a basis, complete set, of the Hilbert space of the system under 

consideration. Then the expectation value of the operator Â  can be rewritten after inserting the 
unit operator 1 n nn

ϕ ϕ=∑  as 

ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆTr( )

i i i i i n n ii i n

n i i i n n nn i n

A p A p A

p A A A

ψ ψ ψ ϕ ϕ ψ

ϕ ψ ψ ϕ ϕ ρ ϕ ρ

= =

⎡ ⎤= = =⎣ ⎦

∑ ∑ ∑
∑ ∑ ∑

 

Here we have used the trace operator, Tr which adds all diagonal terms of an operator. For a 
general operator  

ˆ ˆTr n nn
Q Qϕ ϕ=∑  

The trace is independent of the basis used- it is invariant under a basis transformation. Another 
property of the trace is: 

Tr η χ η χ=  
Which is easily verified by writing out the trace with respect to a basis nϕ . 
 

In general the density operator is defined as: 
ˆ i i i

i
pρ ψ ψ=∑ . 

If a system is in a well-defined quantum state ψ , we say that the system is in a pure state. In 
pure state there is just one ip  which is equal to unity and all the rest are zero. In that case: 

ρ̂ ψ ψ= , 
Which is  the projection operator into that state, and we will have the conditions: 
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ˆ ˆ         for pure syatem
i

A A=  
2

†

2

ˆ ˆ ,
ˆ ˆ ,
ˆ ˆTr( ) Tr( ) 1,
ˆ ˆˆTr( ) ,A A

ρ ρ

ρ ρ

ρ ρ

ρ

=

=

= =

=

 

 
Examples: check all the properties of the density operator in the following examples. 
 

1- A completely polarized beam with state ( )zSα ≡ +  
Ans: In the basis set of  and α β , the density matrix is: 

( ) 21 1 0
ˆ ˆ ˆ 1 0 Tr( ) Tr( ) 1

0 0 0
ρ ρ ρ

⎛ ⎞ ⎛ ⎞
= + + = = ⇒ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Also:  
 

( )

( )

( )

1 0 0 1
ˆ ˆ

20 0 1 02

1 0 0
ˆ ˆ

20 0 02

1 0 1 0
ˆ ˆ

0 0 0 12

ˆ

ˆ

ˆ

0 1
Tr Tr Tr 0

0 0

0
Tr Tr Tr 0

0 0

Tr Tr
2

x x

y y

z z

s s

i
s s

i

s s

i

ρ

ρ

ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟× =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞−⎛ ⎞ ⎛ ⎞
⎜ ⎟× =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟× =⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
−⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

= =

 

as one would expect. 
 
H.W.  Find ρ̂  for a completely polarized beam with state ( )zSβ ≡ − , and calculate ˆxs , ˆys  

and  ˆzs . 
Ans: 

( )
0 0 0

ˆ 0 1
1 0 1

ρ
⎛ ⎞ ⎛ ⎞

= − − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

H.W.  For the state 1 2a aψ α β≡ + , with 2 2
1 2 1.a a+ =  prove that the density matrix can 

be given by: 
( )( )* *

1 2 1 2

2 *
1 1 2

2*
2 1 2

ˆ a a a a

a a a

a a a

ρ α β α β= + +

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

Which indicates that the diagonal elements 2
1a  and 2

2a  are just the probabilities that the 
electron is in the state α  or β , respectively. 
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2- A completely polarized beam with state ( ) ( ) 11 1
2 2 1

Sx α β ⎛ ⎞
± ≡ ⎜ ⎟

±⎝ ⎠
± =  

Ans: 
( ) ( )

( )

† †

2

1 1
2 2

1 1 11 1
1 1

2 21 1 1

ˆ

ˆ ˆTr( ) Tr( ) 1

ρ α β α β

ρ ρ⎛ ⎞ ⎛ ⎞±
± =⎜ ⎟ ⎜ ⎟

± ±⎝ ⎠ ⎝ ⎠

= ± ±

= ⇒ = =
 

3- Un-polarized beam with state (50%) 11 1 1
2 2 2 1
α β ⎛ ⎞

⎜ ⎟
⎝ ⎠

+ =  

Ans: 

( ) ( ) ( ) ( )

2

1 1 1 1
2 2 2 2

1 1
Î

2 2

1 0
ˆ 1 0 0 1

0 1

1 0
ˆ ˆTr( ) Tr( )

0 1

ρ

ρ ρ

⎛ ⎞ ⎛ ⎞
= + + + − − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

= = ⇒ ≠⎜ ⎟
⎝ ⎠

 

Another way of calculating ˆmnρ  

11

12

1 1
2 2

1ˆ ˆ ;
2

1 1ˆ ˆ 0
2 2

ρ ρ

ρ ρ

= + + = + + + + + + − − + =

= + − = + + + − + + − − − =
 

 
 

Now, case B: 50% in the state ↑ ,  50% ↓ .  The density matrix is 

 
( ) ( )

1 1ˆ
2 2

1 0 1 01 1 11 0 0 1 .
0 1 0 12 2 2

ρ = ↑ ↑ + ↓ ↓

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠  
 

This is proportional to the unit matrix, so 
1ˆTr Tr 0,
2 2x xsρ σ= =

 and similarly for sy and sz, 

since the Pauli σ-matrices are all traceless.  Note also that 
2 1

2ˆ ˆ ˆρ ρ ρ= ≠ , as is true for all mixed 
states. 
  

Finally, let us consider a 50%:50% mixed state of spins in 
( )1

2x↑ = ↑ + ↓
, “up” along the 

x-axis, and  
( )1

2x↓ = ↑ − ↓
, “down” in the x-direction.  

  
It is easy to check that 
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1/ 2 1/ 2 1/ 2 1/ 2 1 01 1 1 1 1ˆ .
1/ 2 1/ 2 1/ 2 1/ 2 0 12 2 2 2 2x x x xρ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ↑ ↑ + ↓ ↓ = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

  
Which is just the identity matrix divided by 2. 
Check if we can put: 

( ) ( )
1 1 1 1

1 1 1 1 12 2 2 2
2 2 2 2 21 1 1 1

2 2 2 2

1 0
0 1 x xS S

⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎜ ⎟ ⎜ ⎟= + = + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ −⎝ ⎠ ⎝ ⎠

 

Which is 50% of ( )xS +  and 50% of ( )xS − . What is this means to us? It means that both 
formulations describe a state about which we know nothing-we are in state of total ignorance, the 
spins are completely random, all directions are equally likely. The density matrix describing such 
a state can not depend on the direction we choose for our axis. Note that this is not the only 
representation. 
 

This is exactly the same density matrix we found for 50% in the state ↑ ,  50% ↓ !  The 
reason is that both formulations describe a state about which we know nothing—we are in a state 
of total ignorance, the spins are completely random, all directions are equally likely.  The density 
matrix describing such a state cannot depend on the direction we choose for our axes.  
  
Another two-state quantum system that can be analyzed in the same way is the polarization state 
of a beam of light, the basis states being polarization in the x-direction and polarization in the y-
direction, for a beam traveling parallel to the z-axis. Ordinary unpolarized light corresponds to 
the random mixed state, with the same density matrix as in the last example above.  
 
 

4- A completely polarized beam with state ( ) 11 1
2 2 1

Sx α β
⎛ ⎞

+ ≡ + ⎜ ⎟
⎝ ⎠

=  

( )

( )

( )

1 1 11 1 1 1
1 1

2 22 2 1 1 1

1 1 0 11ˆ ˆ
21 1 1 02 2

1 1 1 01ˆ ˆ 0
1 1 0 12 2

ˆTr Tr

ˆTr Tr

ˆ

x x

z z

s s

s s

α β α β

ρ

ρ

ρ ⎛ ⎞ ⎛ ⎞
+ + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟× =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟× =⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

= =

= =

= =

 

 
H.W. If the density operator for the spin ½ particles is: 

1 2 3
ˆˆ ˆ ˆ ˆIo x y zc c s c s c sρ = + + +  

with Î  is the unit 2 2×  matrix and ic are constants, prove that: 
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1 ˆ ˆ ˆ
2

1ˆ ˆ ˆ
2

1 1
2 2

ˆ

ˆ ˆˆ ˆ ˆ ˆI+2 s .s = I+ .

x y

x y z

s s i sx

s i s s
ρ

σ σ

+ −

+ −

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤= ⎣ ⎦

 

and σ̂  are the Pauli’s matrices. 
 
Example:  Consider a pure ensemble of spin ½ particles polarized along the vector 

1 1
, 0, 3)

2 2
P (=   

a- Calculate the density matrix for the ensemble and check that 2ˆ ˆTr( ) Tr( ) 1ρ ρ= = . 
b- Calculate the ensemble average ˆzs  and ˆxs  using the density matrix. 

Answer: for the polarization vector 1 1
, 0, 3)

2 2
P (=  , we have 

a- with x y z
1 1
2 2

ˆ ˆˆ ˆ ˆ ˆ ˆI+ .P I+ P P Px y zρ σ σ σ σ⎡ ⎤ ⎡ ⎤= = + +⎣ ⎦ ⎣ ⎦ , then  
1 1 1 1

3 1 31 12 2 2 2
2 21 1 1 1

3 1 3
2 2 2 2

0 01 0
ˆ

0 1 0 0
ρ

+

− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

b- Will find 2

1 1
1 31 2 2

2 1 1
1 3

2 2

ˆ ˆρ ρ
+

−

⎛ ⎞
⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎝ ⎠

 and 2ˆ ˆTr( ) Tr( ) 1ρ ρ= = . 
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Statistics of various ensembles 
1- The microcanonical ensemble:- Systems with fixed N  and V , and an energy lying 

within the interval 1 1
2 2

( , )E E− ∆ + ∆ , where E∆ << . The total number of distinct 

microstates accessible to a system is ( , , ; )E V NΓ ∆ . From the equal a priori probabilities  

                                             1
( , , ; )kp
E V N

=
Γ ∆

 

Thus all the states in the microcanonical ensemble appear with the same weight which 
implies that  
                                              ˆ i i ii

pρ ψ ψ=∑  

with the discrete eigenvalues ( )iE  lying within the range 1 1
2 2iE E E− ∆ < < + ∆ . 

                        ( ) 1ˆ
( )m i i i n mi in n mnmn i i

p p
E

ρ ψ ψ ψ ψ δ δ δ= = =
Γ∑ ∑  

with 

                                             
1

for each of the accessible states
( )

for all other  states

,  

0
n

Ep Γ
⎧⎪= ⎨
⎪⎩

 

The entropy 
                                                ln ( )BS k E= Γ  
where ( )EΓ  is now calculated quantum mechanically, taking into account the 
indistinguishability of the particles, which implies no paradox, such as Gibbs' paradox. 
Also, as 0T → , system goes to the ground state which gives ( ) 1EΓ =  i.e. 0S =  (third 
law of thermodynamics) 

                               
2 1 pure case, 

( )
2>1 mixed case (degenrate), , 0 

p p
E

p p S

⎧ =⎪Γ = ⎨
⎪ ≠ ≠⎩

 

 
2- The microcanonical ensemble:- Systems with fixed N , V and T and different energy E . 

The probability that a system, chosen at random from the ensemble, possesses an energy 
nE is determined by Boltzmaan factor nEe β− , and the density matrix in the energy 

representation is therefore taken as 
                                       ( )ˆ n mnmn

pρ δ=  
with 

                                             ,              0,1,2,
nE

n
ep n

Z

β−

= =  

Thus density operator in the canonical ensemble could be written as:  

          

( )

ˆ

ˆ

ˆ

ˆ

Tr

iE H

i i i i i i ii i
i

H

H

e ep
Z Z

e
e

β β

β

β

ρ ψ ψ ψ ψ ψ ψ
− −

−

−

= = =

=

∑ ∑ ∑
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The expectation value ˆ
N

A   of a physical quantity A  is now given by 

                                        ( ) ( )
( )

ˆ

ˆ

ˆTr
ˆ ˆ ˆTr =

Tr

H

HN

Ae
A A

e

β

β
ρ

−

−
=  

the suffix N  here emphasizes he fact that the averaging has been done over an ensemble 
with N fixed. 

Example:  If 1 0ˆ ˆ
0 1zH B Bµ σ µ
⎛ ⎞

= − ⋅ = − = − ⎜ ⎟−⎝ ⎠
µ B  find ˆzσ . 

Answer: 

( ) ( )
ˆ ˆ 2 2 3 3

2 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

(

1 1
2! 3!

1 1
2! 3!

ˆ ˆ ˆ ˆ1

ˆ ˆ                     1 1

ˆ ˆ                     1cosh sinh

cosh 0
                     

0 cosh

zBH
z z z

z

z

B B B

B B B

B B

B

B

e e µ σβ βµ βµ βµ

βµ βµ βµ

βµ βµ

βµ

βµ

σ σ σ

σ

σ

−− = = + + + +

= + + + + +

= +

=
( )

) ( )

sinh 0 0
0 sinh 0

B

B

B

B

e
e

βµ

βµ

βµ

βµ −

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ = ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

Note that: With the definition
1 0

ˆ
0 1zσ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, one finds 

2 4 6

3 5 7

1 0 ˆˆ ˆ ˆ 1,
0 1

ˆ ˆ ˆ ˆ ,

z z z

z z z z

σ σ σ

σ σ σ σ

⎛ ⎞
= = = = =⎜ ⎟

⎝ ⎠
= = = =

 

then 
ˆ

ˆ

ˆ

( )

( )

Tr( ) 2cosh

01ˆ
2cosh 0Tr( )

H B B

BH

BH

B

B

e e e

ee
ee

β βµ βµ

βµβ

βµβ

βµ

βµ
ρ

− −

−

−−

= + =

⎛ ⎞
⇒ = = ⎜ ⎟

⎝ ⎠

 

 

( ) 0

0

1 0

0 1

1
2 cosh( )

1
2 cosh( )

2sinh( )
tanh( )

2 cosh( ) 2 cosh( )

ˆˆ ˆTr Tr

0
Tr

0
B B

z z

B

B

B

B

e

eB

B

e e B
B

B B

e
e

βµ βµ

βµ

βµ

βµ

βµβµ

βµ

βµ
βµ

βµ βµ

σ ρσ

−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟×⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠−

−

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟

−⎝ ⎠

= = =
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