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Model of ferromagnet with Infinite (long) range interaction 
 

 See W. D. McComb, “renormalization method, A GUIDE FOR BEGINNERS”, 
(Oxford, 2004). Sec. 7.8 

 
7.8 Validity of mean-field theory 
 
Mean-field theory can be shown to be equivalent to an assumption that each spin interacts 
equally with every other spin in the lattice: this implies infinite interaction range in the limit 
N  . 
 
7.8.1 The model (Kac’s Model) 
We wish to set up a model in which all spins interact with each other. For N  spins, we have 
effectively 2 / 2N pairs of spins, so in order to have the same overall energy as the Ising model 
the interaction of each pair must be proportional to 1/ N . Then the total energy behaves as 
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which is correct. 

In view of this, let us suppose that the N spins have an interaction energy −J/N between 
each pair and, assuming zero external fields, write the Hamiltonian as 
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Here 1iS   for all i . Our aim is to obtain the Helmholtz potential for one spin in the 

thermodynamic limit N  , where 
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To do so, we have to do the following: 
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Then the following points should be noted: 
i. In the second equality we have abandoned the condition i <j in the double sum therefore 

each off-diagonal term is now counted twice. Accordingly we drop the factor of two. 
ii. The double sum now includes (erroneously) the diagonal terms, for which i j , and so 

we cancel these by adding the last term. 
 

2- Now each 2 1iS  , hence the last term in (5.69) is equal to N ×J/N and so the Hamiltonian 

(5.67) becomes: 
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3- Then the expression for the partition function reads: 
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And finally the exponent (5.73) reads: 

 
Substitution of (5.75) into (5.71) leads to the following expression for the partition function: 

 

In (5.76) we used:   1
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5-  Next, we will use the identity 
ln( )N N yy e , then the partition function reads: 

 
6- Considering that for large N the main contribution from the integral in (5.77) comes from 

the region of x  where ( )f x has a maximum we can evaluate it on base of the steepest 
decent (Saddle-point) method in the form: 
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For the Helmholtz potential for one spin we get: 

 

 
Comparing (5.82) with the equation  

 
for 0H  , we see that it is the same as those obtained in the frame of mean molecular field 
approximation. The behavior of the equation  

2( , ) ln[cosh( )]f x t tx x    
is shown in the following figure. We see that the maximum value of it for 1/ 2t  correspond to 

0x  , whereas for 1/ 2t   it is given by 0x  . For the critical temperature one has: 
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