

XPS STUDY OF IRON SODIUM TELLURITE GLASSES <u>A. Mekki</u> and G.D.Khattak Department of Physics, KFUPM, Dhahran, Saudi Arabia

Motivations

- •Tellurite based oxide glasses have potential applications in optical materials.
- Transition metal doped oxide glasses are also of scientific interest due to their
- semiconducting and magnetic properties
- No structural work has been done on this glass system

Objectives

- Use the XPS technique to investigate:
- Structural role of Fe₂O₃ in tellurite glasses
- •Identify the various structural units of Te atoms in these glasses
- •Identify the presence of the two valence states of Fe ions in these glasses

Glasses composition

 $(Fe_2O_3)_x - (TeO_2)_{0.7-x} - (Na_2O)_{0.3}$, $0.05 \le x \le 0.15$

Sample preparation

•Stoichiometric amounts of Fe₂O₃, Na₂CO₃ (for Na₂O) and TeO₂ were melted in alumina crucibles between 850-900 °C depending on the composition for one hour

•XPS measurements were performed on glass rods fractured in UHV (~ 10⁻¹⁰ mbar). Core level spectra of Te 3d, O 1s and Fe 2p were recorded and analyzed

	Te 505/2		TeO ₃		1604		
х	BE	FWHM	BE	FWHM	BE	FWHM	TeO3/total Te
0.05	576.15	2.13	-	-	576.15	2.13	0
0.10	576.03	2.59	575.14	2.20	576.21	2.10	26.8
0.15	575.92	2.82	575.10	2.20	576.20	2.10	38.8
TeO ₂	576.10	2.07			576.10	2.07	0

XPS indicates a slight decrease in binding energies of Te 3d spectra with an increase in Fe_2O_3 content. A fitting of the Te $3d_{5/2}$ with two contributions reveal the existence of both TeO_4 and TeO_3 units in these glasses

Fe 2p Core level Spectra

	Fe 2p _{3/2}		Fe 2p _{1/2}		$\Delta E (eV)$
х	BE	FWHM	BE	FWHM	
0.05	710.10	3.82	723.78	4.51	13.68
0.10	710.07	4.32	723.46	3.93	13.39
0.15	710.04	3.91	723.39	4.21	13.35
Fe ₂ O ₃	710.7	4.3			13.60
FeO	709.2	4.3			

XPS indicates that the BE of the Fe $2p_{3/2}$ does not vary much with increase in Fe₂O₃ content and Fe³⁺ is the only oxidation state of Fe ions in these glasses

Conclusions

The results are summarized as follows (i) Te exist in both TeO₄ trigonal bipyramid

- and TeO₃ trigonal pyramid units (ii) Fe ions exit predominantly in Fe³⁺ state for all compositions
- (iii) NBO increases with increase in Fe₂O₃ content in the glass network. The measured and calculated number of NBO agrees well considering Fe₂O₃ as network modifier.

Results and Discussion

Intensity (arb. units)

Fe 2p

c = 0.15

= 0.10

720 715

Binding energy (eV)