XPS and magnetization studies of Sr-v-borate glasses

Guldad Khattak

04 April 2004

Department of Physics, KFUPM Dhahran ,Saudi Arabia

In collaboration with

Professor Tabet

Professor Wenger

OUTLINE

- Amorphous materials
- Introduction to the XP\$ technique
- Desirability for Magnetization & XPS Studies
- XPS of Sr-V-borate glasses
- Results/Discussion
- Conclusion

Amorphous materials
Without form/no periodicity
Not-crystalline
Have short range order rather

than long range order

Glass form a particular class of amorphous materials

Types of glasses

- Metallic glasses/spin glasses (CuMn, FeMn)
- Semiconducting glasses (As₂Te₃)
- Insulating glasses (oxide glasses) but TM oxide glasses are Semicond.

Oxide glasses have technological applications such as:

- Optical fibers (Si, Ge)
- Ionic conductors (Alkali-Si or Alkali-Ge)
 - Semiconductors (Fe-B, Cu-Si, V-Ge) Glass Ceramics (Mg-Al-Si, Mg-P-Si)

Methods of preparation Cooling from the melt Condensation from vapor Pressure quenching Solution hydrolysis Anodization Bombardment of crystals by highenergy particles or by shock waves

Role of different oxides in glasses

- SiO₂, P₂O₅, GeO₂, B₂O₃ are called network formers (these oxides readily form a glass)
- Al₂O₃, TiO₂, MgO are called intermediate (can substitute for network formers but do not form glasses on their own)
- Na₂O, LiO₂, K₂O are called network modifiers (disrupt the glass network)

Basic aspects of XPS

XPS is a <u>surface</u> analytical technique (top 0.5-5 nm) that is widely used for material surface characterization.

Chemical and structural effects

BE of photoelectron sensitive to:

Type of atoms

The oxidation state of the atom

Local chemical environment

X-ray photoelectron spectroscopy (XPS) showing chemical shift

Objectives

- (i) Investigate the magnetic properties of V ions in Sr-V-borate glasses.
- (ii) Find the redox state(s) of V ions using both XPS and magnetic measurements.
- (iii) Study the structural role of V & Sr in these materials

Glass system investigated

$(V_2O_5)_z(SrO)_{0.2}(B_2O_3)_{0.8-z}$

z = **0.4**, **0.5**, **0.6**, **0.7**, **0.8**

Experimental details

Sample preparation

Stoichiometric amounts of V_2O_5 , SrO and B_2O_3 were melted in Alumina crucibles at ~ 1100 °C for two hours. Chemical composition was determined by ICP.

Magnetic data

M vs. T data were recorded using a SQUID magnetometer in a magnetic field of 5000 Oe over a temperature range of 5 K to 300 K. Accuracy $\sim \pm 3\%$.

XPS measurements

High resolution V 2p, O 1s, Sr 3p, and B 1s core level spectra were obtained Using an Al K α X-ray source on a VG ESCALAB Mk II. Glass rods were Fractured in UHV (~ 10⁻¹⁰ mbar). The C 1s was a reference level. Accuracy in the quantitative analysis ~ ± 5%.

Sr 3p spectra have the same B.E. for all samples.

 Shifted by 0.6 eV towards higher
 B.E. in comparison to their vaues in SrO powder.

This shift arises from a change in the molecular environment.

/ 2p spectra

- . the V 2p_{3/2} spectra for the glass samples are sufficiently broaden such that two peaks are fitted to the data.
- These peaks are associated with the presence of V⁵⁺ and V⁴⁺ and the relative area under each peak reflects the relative amount of each ion.
- More than 90% of the V is found to be in the V⁵⁺ state in these glass samples.

Photoelectron Intensity (arb. units)

O 1s spectra

(BO)

V-O-Sr, Sr-O-Sr, V = O non-bridging oxygen

 $(V_2O_5)_x (SrO)_y (B_2O_3)_z$

- NBO/TO = (4x+2y)/(5x+y+3z)

■ NBO/TO 57-85%

Good agreement between calculated and measured.

Photoelectron Intensity (arb. units)

Magnetization Results

TABLE Compositions and magnetic characterization parameters for the vanadate glasses.

	Batch	Actual		$(M/H)_{const}$	С	θ		
		V ₂ O ₅	SrO	B_2O_3	$\left(\frac{10^{-7}\text{emu}}{\text{g Oe}}\right)$	$\left(\frac{10^{-4}\text{emu K}}{\text{g Oe}}\right)$	(K)	V^{4+}/V
$(SrO)_{x}(V_{2}O_{5})_{1-x}$	x = 0.5	0.488	0.511	_	0.700	0.533	-0.91	0.0206
	x = 0.4	0.591	0.409	-	1.17	0.700	0.03	0.0236
	x = 0.3	0.692	0.308	-	1.55	0.955	-0.05	0.0289
	x = 0.2	0.792	0.208	-	2.00	1.54	-2.85	0.0427
$(V_2O_5)_{0.5}(SrO)_{0.5-y}(B_2O_3)_y$	y = 0.1	0.498	0.415	0.087	0.670	0.603	-0.07	0.0225
	y = 0.2	0.483	0.299	0.218	0.630	0.731	0.42	0.0270
	$y = 0.3^{a}$	0.516	0.214	0.270	0.850	1.41	-1.38	0.0489
	$y = 0.3^{b}$	0.486	0.192	0.322	2.00	0.771	-5.65	0.0276
	y = 0.4	0.539	0.112	0.347	1.76	0.617	-7.41	0.0204
$(V_2O_5)_z(SrO)_{0.2}(B_2O_3)_{0.8-z}$	z = 0.4	0.434	0.220	0.346	0.950	0.734	-1.88	0.0283
	$z = 0.5^{b}$	0.486	0.192	0.322	2.00	0.771	-5.65	0.0276
	$z = 0.5^{a}$	0.516	0.214	0.270	0.850	1.41	-1.38	0.0489
	z = 0.6	0.613	0.209	0.178	2.00	3.24	-2.64	0.1007
	z = 0.7	0.701	0.209	0.091	1.67	2.47	-1.94	0.0721
	z = 0.8	0.792	0.208	0.000	2.00	1.54	-2.85	0.0427

^{a,b} – Refers to two samples with the same nominal composition.

Conclusion

✓ The XPS analysis of V 2p core level indicates that more than 90% V ions exist in the V5⁺ state only

✓ The magnetization studies also suggests that V ions are mainly in the V⁵⁺ valence state and behave antiferromagnetically

✓ The strength of the interaction increases with increase in vanadium concentration

