Ayman Ghannam
 Chapter 5\&6 "Force and Motion I\&II"

1- A $70-\mathrm{kg}$ man stands on a spring scale in an elevator that has a downward acceleration of $2.8 \mathrm{~m} / \mathrm{s}^{* *} 2$. The scale will read: (A: 490 N)

2- A person pulls a 50-kg box horizontally with a constant horizontal force of 200 N . If the coefficient of kinetic friction muk is 0.2 and the coefficient of static friction $\left(\mathrm{mu}_{\mathrm{s}}\right)$ is 0.3 . Find the acceleration of the box. (A: 2 $\mathrm{m} / \mathrm{s}^{* *}{ }^{*}$)

3- A block of mass $\mathrm{M}=10 \mathrm{~kg}$ is pushed up along a 30 degree inclined plane with a force F parallel to the inclined plane. If the velocity of the block is constant and the coefficient of kinetic friction mu_{k} is 0.2 , find the magnitude of the force. (A: 66 N)

4- One end of a $1.0-\mathrm{m}$ string is fixed; the other end is attached to a $2.0-\mathrm{kg}$ stone. The stone swings in a vertical circle, and has a speed of $4.0 \mathrm{~m} / \mathrm{s}$ at the top of the circle. The tension in the string at this point is approximately: (A: 12 N)

5- A 3.5-kg block is pulled at constant velocity along a horizontal floor by a force $\mathrm{F}=15 \mathrm{~N}$ that makes an angle of 40 degrees with the horizontal. Find the magnitude of the force of friction between the block and the floor. (A: 11 N)

6- Find the minimum coefficient of static friction between the tyres of a car and a level road if the car is to make a circular turn of radius 90 m at a speed of $60 \mathrm{~km} / \mathrm{h}$. (A: 0.315)

7- Two blocks are connected by a string and pulley as shown. Assuming that the string and pulley are massless, the magnitude of the acceleration of each block is: (A: $0.98 \mathrm{~m} / \mathrm{s}^{2}$)

8- Block A, with a mass of 10 kg , rests on a 35° incline. The coefficient of static friction is 0.40 . An attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. What is the smallest mass m_{B}, attached to the dangling end, for which A remains at rest? (A: 2.5 kg)

