Ayman Ghannam
 Chapter 4 "Motion in Two and Three Dimensions"

1- A particle moves with a constant speed along the circumference of a circle of radius 5 m . It completes one revolution every 20 s . What is the magnitude of its average velocity during the first 5 s ? Assume that at $\mathrm{t}=0$, the particle is on +x -axis see figure. (A: $\operatorname{sqrt(2)} \mathrm{m} / \mathrm{s}$)

2- Car A is moving with a speed of $30 \mathrm{~km} / \mathrm{h}$ along the positive x -axis and car B is moving with a speed of $40 \mathrm{~km} / \mathrm{h}$ along the positive y-axis. What is the velocity of car B with respect to car A? (A: $30 i+40 j \mathrm{~km} / \mathrm{h}$)

3- A ball leaves the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$ at an angle of 60 degrees with the horizontal. Find its speed at its highest point. (A: $25 \mathrm{~m} / \mathrm{s}$)

4- A stone is thrown from the ground into the air with an initial velocity $\mathrm{V}=(5.0 \mathrm{i}+9.0 \mathrm{j}) \mathrm{m} / \mathrm{s}$. To what maximum height will the stone rise? (A: 4.1 m)

5- A particle starts from the origin at $\mathrm{t}=0$ with a velocity of $8.0 \mathrm{j} \mathrm{m} / \mathrm{s}$ and moves in the XY plane with a constant acceleration of $(4.0 \mathrm{i}+2.0 \mathrm{j}) \mathrm{m} / \mathrm{s}^{* *} 2$. At the instant the X coordinate of the particle is 32 m , find its y coordinate. (A: 48 m)

6- A stone is thrown horizontally from the top of a 40 m high hill. It strikes the ground at an angle of 30 degrees. With what speed was it thrown? (A: $49 \mathrm{~m} / \mathrm{s}$)

7- A river has a steady flow of $0.30 \mathrm{~m} / \mathrm{s}$. A student swims downstream a distance of 1.2 km and returns to the starting point. If the student can swim at a constant speed of v in still water and the downstream portion of the swim takes him 20 minutes, the time required for the entire swim is: (A: 70 minutes)

8- Find the magnitude of the centripetal acceleration of a particle on the tip of a fan blade, 0.150 m in radius, rotating at 1200 revolutions every minute. (A: $2370 \mathrm{~m} / \mathrm{s}^{* *}$)

9- A boat can travel with a velocity of $1.70 \mathrm{~m} / \mathrm{s}$ in still water (that is $\mathrm{Vbw}=1.70 \mathrm{~m} / \mathrm{s}$). The boat heads (points) across a river where the current is $0.75 \mathrm{~m} / \mathrm{s}$ (that is $\mathrm{Vwg}=0.75 \mathrm{~m} / \mathrm{s}$). What is the speed of the boat relative to the ground? (A: $1.86 \mathrm{~m} / \mathrm{s}$)

10- The airplane shown is in level flight at an altitude of 0.50 km and a speed of $150 \mathrm{~km} / \mathrm{h}$. At what distance d should it release a heavy bomb to hit the target X ? Take $g=10 \mathrm{~m} / \mathrm{s} 2$. (A: 417 m)

11- An object is moving on a circular path of radius π meters at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$. The time required for one revolution is: ($\mathrm{A}: \pi^{2} / 2 \mathrm{~s}$)

