Ayman Ghannam
 Chapter 3 "Vectors"

1- The angle between vector $\mathbf{B}=4.0 \mathbf{j}+3.0 \mathbf{k}$, and the positive y axis is approximately: (A: 37 degrees)
2- Vector $\mathbf{A}=(5.0 \mathbf{i}+3.0 \mathbf{j}) \mathrm{m}$, and vector \mathbf{B} is 6 m in length and making 120 degrees angle with + ve x -axis.
Find A-B. (A: $(8.0 \mathbf{i}-2.2 \mathbf{j}) \mathrm{m})$
3- If $\mathbf{a}=(3.0 \mathbf{i}+4.0 \mathbf{j}) \mathrm{m}$ and $\mathbf{b}=(5.0 \mathbf{i}-2.0 \mathbf{j}) \mathrm{m}$, find the angle between the two vectors. (A: 75 degrees)
4- For the following three vectors;
$\mathbf{A}=2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}, \mathbf{B}=4 \mathbf{i}+4 \mathbf{j}$ and $\mathrm{C}=2 \mathbf{i}+2 \mathbf{k}$, find \mathbf{A}.(BxA). (A: 0)
5- A vector in the xy-plane has a magnitude of 25.0 and an x-component of 12.0. The angle that it makes with the positive x -axis is: (A: 61.3 degrees)

6- The unit vectors in the positive directions of the x, y, and z axes are labeled \mathbf{i}, \mathbf{j}, and \mathbf{k}. The value of [i.($\mathbf{j} \mathrm{x}$ k)] is: (A: +1)

7- Two vectors $\mathbf{A}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $\mathbf{B}=2 \mathbf{i}+4 \mathbf{j}-\mathrm{q} \mathbf{k}$ (q is a constant) are perpendicular to each other. Find the constant q. (A: 5)

8- If vector $\mathbf{A}=28 \mathbf{i}+11 \mathbf{j}$
and vector \mathbf{B} (magnitude of $\mathbf{B}=25$) as shown in the figure, what is the magnitude of the sum of these two vectors? (A: 32)

9- Vector $\mathbf{A}=-6 \mathbf{i}+14 \mathbf{j}$. Find vector \mathbf{B} whose magnitude is twice that of \mathbf{A} and is opposite in direction to \mathbf{A}. (A: 12 $\mathbf{i}-28 \mathbf{j}$)

10- If vector $\mathbf{A}=6 \mathbf{i}-7 \mathbf{j}$ and vector $\mathbf{B}=-12 \mathbf{i}+10 \mathbf{j}$, what angle does vector $\mathbf{C}=2 * \mathbf{A}-\mathbf{B}$ make with +x -axis measured counterclockwise. (A: 315°)

11- The vectors v, w, and x are related by $\mathrm{x}=\mathrm{v}+\mathrm{w}$. Which diagram below illustrates this relationship? (A: II)

।

II

III

12- A vector of magnitude 3 CANNOT be added to a vector of magnitude 4 so that the magnitude of the resultant is: (A: zero)
A) zero
B) 1
C) 3
D) 5
E)7

