Ayman Ghannam

Chapter 15
Simple Harmonic Motion
http://ssc.kfupm.edu.sa/index.php?mp=hs dtl\&ac=1447

$\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}+\varphi)$
$\mathrm{v}(\mathrm{t})=-\mathrm{A} \omega \sin (\omega \mathrm{t}+\varphi) \quad \Rightarrow \quad \mathrm{v}_{\text {max }}=\mathrm{A} \omega$
$\mathrm{a}(\mathrm{t})=-\mathrm{A} \omega^{2} \cos (\omega \mathrm{t}+\varphi) \Rightarrow \mathrm{a}_{\text {max }}=\mathrm{A} \omega^{2}$

$\begin{aligned} & \mathbf{F}_{s}=-k \mathbf{x} \\ & P E_{\text {elassic }}=\frac{1}{2} k x^{2} \\ & x=A \cos \omega t \\ & \omega=\frac{2 \pi}{T}=2 \pi f \end{aligned}$	$\begin{aligned} & T_{S}=2 \pi \sqrt{\frac{m}{k}} \\ & T_{P}=2 \pi \sqrt{\frac{l}{g}} \\ & T=\frac{1}{f} \end{aligned}$	$\begin{aligned} & F_{s}=\text { the restoring force of the spring } \\ & k=\text { spring constant } \\ & x=\text { displacement from equilibrium position } \\ & P E_{\text {elastic }}=\text { elastic (spring) potential energy } \\ & A=\text { amplitude } \\ & \omega=\text { angular frequency } \end{aligned}$	$T=$ period $f=$ frequency $m=$ mass $T_{P}=$ period of a pendulum $T_{S}=$ period of a mass on a spring $g=$ acceleration due to gravity

$\underbrace{\infty}_{0}$
Q. 1 A mass $m=5.0 \mathrm{~kg}$ oscillates on the end of a spring on a horizontal surface with negligible friction according to the equation $x=A \cos (\omega t)$. The graph of $F v s . x$ for this motion is shown below. The last data point corresponds to the maximum displacement of the mass. Determine the
(a) Angular frequency ω of the oscillation.(10rad/s)
(b) Frequency f of oscillation. $(1.6 \mathrm{~Hz})$
(c) Amplitude A of oscillation.(1.2m)
(d) Displacement from equilibrium position $(x=0)$ at time of 2 s . $(0.5 \mathrm{~m})$
Q. 2 A block of mass 0.02 kg is attached to a horizontal spring with spring constant of $25 \mathrm{~N} / \mathrm{m}$. The other end of the spring is fixed. The block is pulled a distance 10 cm from its equilibrium position $(x=0)$ on a frictionless horizontal table and released. The frequency of the resulting simple harmonic motion is $\odot 5.6 \mathrm{~Hz}$)
Q. 3 The maximum speed of a $3.00-\mathrm{kg}$ object executing simple harmonic motion is $6.00 \mathrm{~m} / \mathrm{s}$. The maximum acceleration of the object is $5.00 \mathrm{~m} / \mathrm{s}^{2}$. What is its period of oscillations?(7.45s) Q. 4 A 0.500 kg mass attached to a spring of force constant $8.00 \mathrm{~N} / \mathrm{m}$ vibrates in simple harmonic motion with an amplitude of 10.0 cm . Calculate the time it takes the mass to move from $x=0$ to $x=10.0 \mathrm{~cm} .(0.393 \mathrm{~s})$
Q. 5 A block attached to an ideal horizontal spring undergoes a simple harmonic motion about the equilibrium position ($\mathrm{x}=0$) with an amplitude $\mathrm{A}=10 \mathrm{~cm}$. The mechanical energy of the system is 16 J . What is the kinetic energy of the block when $\mathrm{x}=5.0 \mathrm{~cm}(12 \mathrm{~J})$
Q. 6 A block of mass 2.0 kg attached to a spring oscillates in simple harmonic motion along the x axis. The limits of its motion are $x=-20 \mathrm{~cm}$ and $\mathrm{x}=+20 \mathrm{~cm}$ and it goes from one of these extremes to the other in 0.25 s . The mechanical energy of the block-spring system is:(6.3J) Q. 7 A $2.0-\mathrm{kg}$ mass connected to a spring of force constant $8.0 \mathrm{~N} / \mathrm{m}$ is displaced 5.0 cm from its equilibrium position and released. It oscillates on a horizontal, frictionless surface. Find the speed of the mass when it is at 3.0 cm from its equilibrium position. $(0.08 \mathrm{~m} / \mathrm{s})$
Q. 8 A block is in SHM on the end of a spring, with position given by:

$$
x=x_{m} \cos (\omega t+\pi / 6 \mathrm{rad}),
$$

where t is in seconds. At $t=0$, calculate the ratio of the potential energy U to the total mechanical energy E , i.e. U/E of the system.(0.75)
Q. 9 A simple pendulum consists of a mass $m=6.00 \mathrm{~kg}$ at the end of a light cord of length L. The angle θ between the cord and the vertical is given by $\theta=0.08 \cos [(4.43 t+\pi)]$, where t is in second and θ is in radian. Find the length L. $(0.5 \mathrm{~m})$
Q. 10 A 3-kg block, attached to a spring, executes simple harmonic motion according to $\mathrm{x}=2$ $\cos (50 \mathrm{t})$ where x is in meters and t is in seconds. The mechanical energy of the block-spring system is(14000J)
Q. 11 A particle executes simple harmonic motion on a horizontal frictionless surface, with the equilibrium position at $x=0$. At $t=0$, it is released from rest at a displacement $x=0.5 \mathrm{~m}$. If the frequency of oscillation is 5 Hz , find the displacement x at $t=0.02 \mathrm{~s} .(0.4 \mathrm{~m})$
Q. 12 Figure shows the kinetic energy K of a simple pendulum versus its angle θ from the vertical. The vertical axis scale is set by $K s=20.0 \mathrm{~mJ}$. The pendulum bob has mass 0.30 kg . What is the length of the pendulum? $(2.04 \mathrm{~m})$
Q. 13 Figure shows plots of the kinetic energy K versus position x for three linear simple harmonic oscillators that have the same mass. Rank the plots according to the corresponding period of the oscillator, greatest first.(C,B,A)
Q. 14 A thin rod, of length 1.00 m , is pivoted from one end and is allowed to oscillate in a vertical plane like a pendulum. What is the period of oscillation of this system? Ignore air resistance and the friction at the pivot.(1.64s)
Q. 15 In Fig. a physical pendulum consists of a uniform solid disk (of radius $R=2.35 \mathrm{~cm}$) supported in a vertical plane by a pivot located a distance $d=$ 1.75 cm from the center of the disk. The disk is displaced by a small angle and released. What is the period of the resulting simple harmonic motion?(0.366s)
Q. 16 In Fig. below, a physical pendulum consists of a uniform solid disk (of radius $\mathrm{R}=2.27 \mathrm{~cm}$) supported in a vertical plane by a pivot located at the rim of the disk. The disk is displaced by a small angle and released. What is the period of the resulting simple harmonic motion?(0.370s)

