Ayman Ghannam Chapter 10

Quantity	Translational	Rotational	
Position	S=r θ	$\theta - \frac{s}{s}$	s = length of arc
		v = -r	r = radius
			θ = angle in radians
Velocity	$v_{\star} = \frac{ds}{dt} = r\frac{d\theta}{dt} = r\omega$	$\omega = \lim \frac{\Delta \theta}{\Delta \theta} = \frac{d \theta}{d r} = v/r$	ω = Angular velocity
V_t = Linear (tangential) velocity	' dt dt	$\Delta t \to 0 \Delta t dt$	
$a_t = tangential acceleration$	$a_t = \frac{dv_t}{dt} = r\frac{d\omega}{dt} = r\alpha$	$\alpha = \lim \frac{\Delta \omega}{\Delta \omega} = \frac{d \omega}{d \omega} = a/r$	α = angular
	dt dt	$\Delta t \to 0 \Delta t \qquad dt$	acceleration
$a_c = \text{Radial}$ (Centripetal)	$v_t^2 - (r\omega)^2 - r\omega^2$		
acceleration	$a_c - \frac{r}{r} - \frac{r}{r} - r\omega$		
Force	F = ma	$\vec{\tau} = \vec{r} \times \vec{F} = \tau l + \tau 2 + \dots$	
		$\tau = I \alpha$	
Mass	m	L \S 2	I = moment of inertia
		$I = \sum_{i} m_i r_i$	(rotational inertia)
		£	m_i = mass of particles
			i.
Kinetic energy	k	$K_{mt} = \frac{1}{2}I\omega^2$	
Parallel axes theorem		$I I + MD^2$	M - total mass
i araner axes theorem		$I = I_{CM} + MD$	D = distance
Linear momentum	D-1411	$max = I \phi$	
	1 - mv	$mvr = 1\omega$ I - PYP-I ω - 11 + 12 +	
	E - dn/dt	T = dt / dt	
	If F = 0 p = 1	$\int_{t_{net}} - dL = constant$	
	constant	$t_{ext} = 0, L_{tot} = constant$	
Linear impulse	J = F t	τt	
Work	w = F s	$w = \tau \theta$	
Power	$\mathbf{p} = F v$	$p = \tau \omega$	

Table 11-1 More Corresponding Variables and Relations for Translational and Rotational Motion^a

Translational		Rotational		
Force Linear momentum Linear momentum ^b	$\vec{F} \\ \vec{P} \\ \vec{P} (= \Sigma \vec{p}_i)$	Torque Angular momentum Angular momentum ^b	$ \vec{\tau} \stackrel{(=\vec{r}\times\vec{F})}{\vec{\ell} \stackrel{(=\vec{r}\times\vec{p})}{\vec{L} \stackrel{(=\Sigma\vec{\ell}_i)}{\vec{L}}} $	
Linear momentum ^b	$\vec{P} = M \vec{v}_{com}$	Angular momentum ^e	$L = I\omega$	
Newton's second lawb	$F_{\text{net}}^{t} = \frac{dT}{dt}$	Newton's second lawb	$\vec{\tau}_{net} = \frac{dL}{dt}$	
Conservation law ^d	$\vec{P} = a \text{ constant}$	Conservation law ^d	$\vec{L} = a \text{ constant}$	

"See also Table 10-3.

^bFor systems of particles, including rigid bodies.

For a rigid body about a fixed axis, with L being the component along that axis. For a closed, isolated system.

Quantity	Translational motion along a fixed direction	Rotational motion about a fixed axis	
Position	x (m)	θ (rad)	
Velocity	v (m/s)	@ (rad/s)	
Acceleration	a (m/s ²)	α (rad/s ²)	
Mass	<i>m</i> (kg)	I (kg.m ²)	
Newton's second law	$F = ma = \frac{dp}{dt} $ (N)	$r = I\alpha$ (m.N)	
Work	$W = \int F dx (J)$	$W = \int \tau d\theta (J)$	
Kinetic energy	$K = \frac{1}{2}mv^2 \ (J)$	$K = \frac{1}{2} I \omega^2 $ (J)	
Power	P = F v (W)	$P = \tau \omega (W)$	
Work-energy theorem	$W = \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2} \text{ (J)}$	$W = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_l^2$ (J)	

Table 10-1 Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Linear Number Equation (2-11) $v = v_0 + at$	Missing Variable		Angular Equation	Equation Number	
	$v = v_0 + at$	$x - x_0$	$\theta = \theta_0$	$\omega = \omega_0 + \alpha t$	(10-12)
(2-15)	$x - x_0 = v_0 t + \frac{1}{2} a t^2$	v	ω	$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$	(10-13)
(2-16)	$v^2 = v_0^2 + 2a(x - x_0)$	t	1	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$	(10-14)
(2-17)	$x - x_0 = \frac{1}{2}(v_0 + v)t$	a	α	$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)t$	(10-15)
(2-18)	$x - x_0 = vt - \frac{1}{2}at^2$	ν_0	ω_0	$\theta - \theta_0 = \omega t - \frac{1}{2} \alpha t^2$	(10-16)

1- Torque is a vector.

2- Torque is positive when the body rotate counterclockwise (convention)

3- Torque is negative when the body rotate clockwise (convention)

SI unit of torque is **N.m (same as the work); but** Never use Joules as a unit of torque, because Joules is a unit of work.

Force causes *linear* acceleration.

Torque causes *angular* acceleration.

