Ayman Ghannam

Chapter 10

Quantity	Translational	Rotational	
Position	$\mathrm{S}=\mathrm{r} \theta$	$\theta=\frac{s}{r}$	$\begin{array}{\|l\|} \hline s=\text { length of arc } \\ r=\text { radius } \\ \theta=\text { angle in radians } \\ \hline \end{array}$
$\begin{gathered} \text { Velocity } \\ v_{t}=\text { Linear (tangential) velocity } \end{gathered}$	$v_{t}=\frac{d s}{d t}=r \frac{d \theta}{d t}=r \omega$	$\omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}=\mathrm{v} / \mathrm{r}$	$\omega=$ Angular velocity
$a_{t}=$ tangential acceleration	$a_{t}=\frac{d v_{t}}{d t}=r \frac{d \omega}{d t}=r \alpha$	$\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}=\mathrm{a} / \mathrm{r}$	$\alpha=$ angular acceleration
	$a_{c}=\frac{v_{t}^{2}}{r}=\frac{(r \omega)^{2}}{r}=r \omega^{2}$		
Force	$F=m a$	$\begin{aligned} \vec{\tau}=\vec{r} \times \vec{F} & =\tau 1+\tau 2+\ldots \\ \tau & =I \alpha \end{aligned}$	
Mass	m	$I=\sum_{i} m_{i} r_{i}^{2}$	$I=$ moment of inertia (rotational inertia) $m_{i}=$ mass of particles i.
Kinetic energy	k	$K_{\text {rot }}=\frac{1}{2} I \omega^{2}$	
Parallel axes theorem		$I=I_{C M}+M D^{2}$	$\begin{array}{\|l} \hline M=\text { total mass } \\ D=\text { distance } \end{array}$
Linear momentum	$\mathrm{P}=m v$	$\begin{gathered} m v r=I \omega \\ \mathrm{~L}=\mathrm{RXP}=\mathrm{I} \omega=\mathrm{l} 1+\mathrm{l} 2+\ldots \end{gathered}$	
	$\begin{gathered} \mathrm{F}_{\text {net }}=\mathrm{dp} / \mathrm{dt} \\ \text { If } \mathrm{F}_{\text {ext }}=0, \mathrm{p}_{\text {tot }}= \\ \text { constant } \end{gathered}$	$\begin{gathered} \tau_{\text {net }}=\mathrm{dL} / \mathrm{dt} \\ \text { If } \tau_{\text {ext }}=0, \mathrm{~L}_{\text {tot }}=\text { constant } \end{gathered}$	
Linear impulse	$\mathrm{J}=F t$	τt	
Work	w $=F \mathrm{~s}$	$\mathrm{w}=\tau \theta$	
Power	$\mathrm{p}=F \mathrm{~V}$	$\mathrm{p}=\tau \omega$	

Table 11-1 More Corresponding Variables and Relations for Translational and Rotational Motion ${ }^{\text {a }}$

Translational		Rotational	
Force	\vec{F}	Torque	$\vec{\tau}(=\vec{r} \times \vec{F})$
Linear momentum	\vec{p}	Angular momentum	$\vec{\ell}(=\vec{r} \times \vec{p})$
Linear momentum	$\vec{P}\left(=\Sigma \vec{p}_{i}\right)$	Angular momentum ${ }^{b}$	$\vec{L}\left(=\Sigma \vec{\ell}_{i}\right)$
Linear momentum	$\vec{P}=M \vec{v}_{\text {ane }}$	Angular momentum ${ }^{c}$	$L=I \omega$
Newton's second law b	$\vec{F}_{\text {net }}=\frac{d \vec{P}}{d t}$	Newton's second law ${ }^{b}$	$\vec{\tau}_{\text {net }}=\frac{d \vec{L}}{d t}$
Conservation law		$\vec{P}=$ a constant	Conservation law

-See also Table 10-3.

${ }^{\mathrm{b}}$ For systems of particles, including rigid bodies.

${ }^{4}$ For a closed, isolated system.

Quantity	Translational motion along a fixed direction	Rotational motion about a fixed axis	
Position	\boldsymbol{x} (m)	$\boldsymbol{\theta}$ (rad)	
Velocity	v (m / s)	ω ($\mathrm{rad} / \mathrm{s}$)	
Acceleration	$\boldsymbol{C}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	$\boldsymbol{\alpha}\left(\mathrm{rad} / \mathrm{s}^{2}\right)$	
Mass	\boldsymbol{m} (kg)	\boldsymbol{I} ($\mathrm{kg} . \mathrm{m}^{2}$)	
Newton's second law	$\begin{equation*} F=m a=\frac{d p}{d t} \tag{N} \end{equation*}$	$\tau=I \alpha(\mathrm{~m} . \mathrm{N})$	
Work	$W=\int F \\| x(J)$	$W=\int \tau \boldsymbol{d} \boldsymbol{\theta}(\mathrm{J})$	
Kinetic energy	$K=\frac{1}{2} m v^{2}(\mathrm{~J})$	$K=\frac{1}{2} I \omega^{2}(J)$	
Power	$P=F v(W)$	$P=\tau \omega(W)$	
Work-energy theorem	$\begin{equation*} W=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \tag{J} \end{equation*}$	$\begin{equation*} W=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega^{2} \tag{J} \end{equation*}$	

Table 10-1 Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

| Equation
 Number | Linear
 Equation | Missing
 Variable | | Angular
 Equation | Equation
 Number |
| :--- | :---: | :--- | :---: | :--- | :--- | :---: |
| $(2-11)$ | $v=v_{0}+a t$ | $x-x_{0}$ | $\theta-\theta_{0}$ | $\omega=\omega_{0}+\alpha t$ | $(10-12)$ |
| $(2-15)$ | $x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$ | v | ω | $\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}$ | $(10-13)$ |
| $(2-16)$ | $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$ | t | t | $\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$ | $(10-14)$ |
| $(2-17)$ | $x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$ | a | α | $\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0}+\omega\right) t$ | $(10-15)$ |
| $(2-18)$ | $x-x_{0}=v t-\frac{1}{2} a t^{2}$ | v_{0} | ω_{0} | $\theta-\theta_{0}=\omega t-\frac{1}{2} \alpha t^{2}$ | $(10-16)$ |

1- Torque is a vector.
2- Torque is positive when the body rotate counterclockwise (convention)
3- Torque is negative when the body rotate clockwise (convention)
SI unit of torque is N.m (same as the work); but Never use Joules as a unit of torque, because Joules is a unit of work.
Force causes linear acceleration.
Torque causes angular acceleration.

Hoop or cylindrical shell $I_{\mathrm{CM}}=M R^{2}$

Solid cylinder or disk
$I_{\mathrm{CM}}=\frac{1}{2} M R^{2}$

Long thin rod with rotation axis through center
$I_{\mathrm{CM}}=\frac{1}{12} M L^{2}$

Solid sphere

$$
I_{\mathrm{CM}}=\frac{2}{5} M R^{2}
$$

Hollow cylinder
$I_{\mathrm{CM}}=\frac{1}{2} M\left(R_{1}{ }^{2}+R_{2}{ }^{2}\right)$

Rectangular plate
$I_{\mathrm{CM}}=\frac{1}{12} M\left(a^{2}+b^{2}\right)$

Long thin rod with rotation axis through end
$I=\frac{1}{3} M L^{2}$

Thin spherical shell
$I_{\mathrm{CM}}=\frac{2}{3} M R^{2}$

$\mathbf{I}_{\text {hoop }}=\mathbf{M R}^{2}$

