Liquid-crystalline ordering in rod–coil diblock copolymers studied by mesoscale simulations

By A. $AlSunaidi^1$, W. K. den $Otter^2$ and J. H. R. $Clarke^3$

¹Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (asunaidi@kfupm.edu.sa)

²Faculty of Science and Technology, University of Twente, PO Box 217,

7500 AE Enschede, The Netherlands (w.k.denotter@utwente.nl)

³Department of Chemistry, UMIST, PO Box 88,

Manchester M60 1QD, UK (jhrc@umist.ac.uk)

Published online 3 June 2004

Using mesoscale dissipative particle dynamics (DPD) simulations, which ignore all atomistic details, we show the formation of lamella mesophases by cooling a fully disordered system composed of symmetric (A_7B_7) rod-coil diblock copolymers. Equilibration is achieved very rapidly using DPD, and isotropic, smectic A and crystalline phases of the rod-like blocks can be observed either by heating or cooling. An interesting pseudo-smectic phase can be characterized when the order-disorder transition temperature is above the clearing temperature. This phase gradually fades into a normal microphase-separated structure as the system is heated through the clearing temperature. Simulations of pure rods, however, show the formation of isotropic, nematic, smectic A and crystalline phases.

Keywords: rod-coil copolymer; liquid crystal; mesoscale simulation; dissipative particle dynamics

1. Introduction

Microphase ordering in block copolymers and mesophase formation in thermotropic liquid crystals are two examples of phenomena that manifest themselves primarily on mesoscopic length- and time-scales. Both processes occur in a large class of liquidcrystal molecules and polymers of practical interest where flexible tails are attached to one or more rigid blocks (Kelker & Hatz 1980). There have been several recent experimental (Chen *et al.* 1996; Jenekhe & Chen 1998, 1999; Lee *et al.* 2001) and theoretical (Duchs & Sullivan 2000; Matsen & Barrett 1998; Reenders & ten Brinke 2002; Semenov 1991; Semenov & Vasilenko 1986) studies aimed at understanding the interplay between microphase ordering and mesophase transitions.

Fifty years ago, Onsager (1949) showed that long rod-like particles, interacting only through excluded-volume interactions, form a nematic phase upon increasing the density. Since then, many computer simulations of liquid-crystal behaviour have been performed using hard-core models, such as spherocylinders and the Gay–Berne

One contribution of 21 to a Theme 'Connecting scales: micro, meso and macro processes'.

Phil. Trans. R. Soc. Lond. A (2004) 362, 1773-1781

 \bigodot 2004 The Royal Society