
Chapter 29
Magnetic Fields Due to Currents
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1. Calculating the Mag. Field Due to a Current

A moving charged particle produces a magnetic field
around itself. Consequently, a current of moving
charged particles produces a magnetic field around
the current.

The figure shows a wire of arbitrary shape, carrying
a current 𝑖. The magnitude of the magnetic field 𝑑𝐵
produced at point 𝑃 at distance 𝑟 by the current-
length element 𝑖 𝑑  𝑠 is

𝑑𝐵 =
𝜇0
4𝜋

𝑖𝑑𝑠 sin 𝜃

𝑟2
,

where 𝜃 is the angle between the directions of 𝑑 𝑠
and  𝑟, a unit vector that points from 𝑑𝑠 toward 𝑃.
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1. Calculating the Mag. Field Due to a Current

𝑑𝐵 =
𝜇0
4𝜋

𝑖𝑑𝑠 sin 𝜃

𝑟2
.

The constant 𝜇0 is called the permeability constant,
whose value is defined to be

𝜇0 = 4𝜋 × 10
−7 T ∙ m/A.

The direction of 𝑑𝐵 is that of the cross product 𝑑 𝑠
×  𝑟. We therefore rewrite the equation above in
vector form as

𝑑𝐵 =
𝜇0
4𝜋

𝑖 𝑑  𝑠 ×  𝑟

𝑟2
.
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1. Calculating the Mag. Field Due to a Current

𝑑𝐵 =
𝜇0
4𝜋

𝑖 𝑑  𝑠 ×  𝑟

𝑟2
.

This equation is know as Biot-Savart law.

We can use this law to calculate the net magnetic
field produced at a point by various current
distributions.

4



1. Calculating the Mag. Field Due to a Current

Magnetic Field Due to a Current in a Large Straight Wire

We can use Biot-Savart law to prove that the magnitude
of the magnetic field at a perpendicular distance 𝑅 from
the end of a long, semi-infinite straight wire carrying a
current 𝑖 is given by

𝐵 =
𝜇0𝑖

4𝜋𝑅
(semi−infinite straight wire).

The magnetic field due to an infinite wire is then

𝐵 =
𝜇0𝑖

2𝜋𝑅
(infinite straight wire).
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1. Calculating the Mag. Field Due to a Current

Magnetic Field Due to a Current in Large Straight Wire

The field lines of 𝐵 form concentric circles around the
wire, as shown in the figure.

To find the direction of the magnetic field set up by a
current-carrying element, we use the following right-
hand rule:

Curled–straight right-hand rule: Grasp the element in
your right hand with your extended thumb pointing in
the direction of the current. Your fingers will then
naturally curl around in the direction of the magnetic
field lines due to that element.
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1. Calculating the Mag. Field Due to a Current

Magnetic Field Due to a Current in Large Straight Wire
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1. Calculating the Mag. Field Due to a Current

Magnetic Field Due to a Current in a Circular Arc of Wire

We can also use Biot-Savart law to show that the
magnitude of the magnetic field at the center of a
circular arc of radius 𝑅 and central angle 𝜙 (in radians),
carrying current 𝑖, is

𝐵 =
𝜇0𝑖𝜙

4𝜋𝑅
.

The direction of the field at the center of the circular arc
can be found using the right-hand rule.
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1. Calculating the Mag. Field Due to a Current

Example 1: The wire in the figure carries a
current 𝑖 and consists of a circular arc of radius 𝑅
and central angle 𝜋/2 rad , and two straight
sections whose extensions intersect the center 𝐶
of the arc. What magnetic field 𝐵 (magnitude and
direction) does the current produce at 𝐶?
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1. Calculating the Mag. Field Due to a Current

For segment 1, the angle 𝜃 between 𝑑 𝑠 and  𝑟 is zero.
Therefore,

𝑑𝐵1 =
𝜇0
4𝜋

𝑖𝑑𝑠 sin 0

𝑟2
= 0.

Thus, 𝐵1 = 0. Similarly, 𝐵2 = 0, because the angle 𝜃
between 𝑑 𝑠 and  𝑟 , for segment 2, is 180°.

Segment 3 is a circular arc of angle 𝜙 =
𝜋

2
rad. Thus,

𝐵3 =
𝜇0𝑖𝜙

4𝜋𝑅
=
𝜇0𝑖 𝜋/2

4𝜋𝑅
=
𝜇0𝑖

8𝑅
.

10



1. Calculating the Mag. Field Due to a Current

The magnitude of the magnetic field at point 𝐶 is

𝐵 = 𝐵1 + 𝐵2 + 𝐵3 =
𝜇0𝑖

8𝑅
.

The direction of 𝐵 is into the plane.
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1. Calculating the Mag. Field Due to a Current

Example 2: The figure shows two long parallel
wires carrying currents 𝑖1 and 𝑖2 in opposite
directions. What are the magnitude and direction
of the net magnetic field at point 𝑃? Assume the
following values: 𝑖1 = 15 A, 𝑖2 = 32 A , and 𝑑
= 5.3 cm.

The currents generate magnetic fields 𝐵1 and 𝐵2
at point 𝑃 with magnitudes

𝐵1 =
𝜇0𝑖1
2𝜋𝑅

and 𝐵2 =
𝜇0𝑖2
2𝜋𝑅

.

We can replace 𝑅 with 2 𝑑/2 = 𝑑/ 2.
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1. Calculating the Mag. Field Due to a Current

With this replacement, 𝐵1 and 𝐵2 become

𝐵1 =
2𝜇0𝑖1
2𝜋𝑑

and 𝐵2 =
2𝜇0𝑖2
2𝜋𝑑

.

We need to add 𝐵1 and 𝐵2 vectorially to find the
resultant magnetic field at 𝑃.
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1. Calculating the Mag. Field Due to a Current

The directions of 𝐵1 and 𝐵2 at point 𝑃 are shown in
the figure. The magnitude of the resultant field is

𝐵 = 𝐵1
2 + 𝐵2

2 =
2𝜇0𝑖1
2𝜋𝑑

2

+
2𝜇0𝑖2
2𝜋𝑑

2

=
2𝜇0
2𝜋𝑑

𝑖1
2 + 𝑖2

2

=
2 4𝜋 × 10−7T ∙ m/A

2𝜋 0.053 m
15A 2 + 32A 2

= 190 μT.
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1. Calculating the Mag. Field Due to a Current

The angle 𝜙 between the directions of 𝐵 and 𝐵2 is
given by

𝜙 = tan−1
𝐵1
𝐵2
= tan−1

𝑖1
𝑖2
= tan−1

15 A

32 𝐴
= 25°.

The angle between the directions of 𝐵 and the x-axis
is then

𝜙 + 45° = 70°.
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2. Force Between Two Parallel Current

The figure shows two long wires, separated
by a distance 𝑑 and carrying currents 𝑖𝑎
and 𝑖𝑏 . We want to study the forces on
these wires due to each other.

Let us first inspect the force on wire 𝑏 due
to the current in wire 𝑎. The magnetic field
𝐵𝑎 is responsible for the force on wire 𝑏.
The magnitude of 𝐵𝑎 at every point on wire
𝑏 is

𝐵𝑎 =
𝜇0𝑖𝑎
2𝜋𝑑

.

𝐵𝑎 is directed downward.
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2. Force Between Two Parallel Current

The force  𝐹𝑏𝑎 on a length 𝐿 of wire 𝑏 due to
the external magnetic field 𝐵𝑎 is

 𝐹𝑏𝑎 = 𝑖𝑏𝐿 × 𝐵𝑎.

where 𝐿 is the length vector of wire 𝑏.
Because 𝐿 and 𝐵𝑎 are perpendicular to each
other, we can write

𝐹𝑏𝑎 = 𝑖𝑏𝐿𝐵𝑎 sin 90° =
𝜇0𝐿𝑖𝑎𝑖𝑏
2𝜋𝑑

.

The direction of  𝐹𝑏𝑎 is the direction of the
cross product 𝐿 × 𝐵𝑎 , which is toward wire
𝑎.
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2. Force Between Two Parallel Current

The general procedure for finding the force
on a current-carrying wire is this:

To find the force on a current-carrying wire
due to a second current-carrying wire, first
find the field due to the second wire at the
site of the first wire. Then find the force on
the first wire due to that field.

Using similar analysis, we can show that
the force on wire 𝑎 due to the current in
wire 𝑏 is toward wire 𝑏. Therefore, the two
wires with parallel currents attract each
other.
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2. Force Between Two Parallel Current

Similarly, if the two currents were
antiparallel, we could show that the two
wires repel each other.

Thus, parallel currents attract each other, and
antiparallel currents repel each other.
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2. Force Between Two Parallel Current

The force acting between currents in parallel
wires is the basis for the definition of the
ampere.

The ampere is that constant current which, if
maintained in two straight, parallel
conductors of infinite length, of negligible
circular cross section, and placed 1 m apart in
vacuum, would produce on each of these
conductors a force of magnitude 2 × 10−7

newton per meter of wire length.
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2. Force Between Two Parallel Current

21

𝐹12 =
𝜇0𝐿𝑖1𝑖2
2𝜋𝑑



2. Force Between Two Parallel Current

b, c, a
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𝐹12 =
𝜇0𝐿𝑖1𝑖2
2𝜋𝑑



3. Ampere’s Law

Ampere’s law reads

 𝐵 ∙ 𝑑  𝑠 = 𝜇0𝑖enc.

The loop on the integral sign means that the dot product 𝐵 ∙ 𝑑  𝑠 is to be
integrated around a closed loop, called an Amperian loop.

The current 𝑖enc is the net current encircled by that closed loop.
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3. Ampere’s Law

To better understand the meaning of the
scalar product 𝐵 ∙ 𝑑  𝑠 and its integral, let us
apply Ampere’s law to the general situation of
the figure. The figure shows cross sections of
three straight wires and an arbitrary
Amperian loop. The counterclockwise
direction of integration shown on the loop is
chosen arbitrarily.

We start by dividing the loop into differential
vector elements 𝑑 𝑠 that are everywhere
directed along the tangent to the loop in the
direction of integration.
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3. Ampere’s Law

The magnetic field at 𝑑 𝑠 due to each current is
in the plane of the figure. Thus, their net
magnetic field 𝐵 at 𝑑 𝑠 must also be in that
plane.

Ampere’s law can be written as

 𝐵 ∙ 𝑑  𝑠 =  𝐵 cos 𝜃 𝑑𝑠 = 𝜇0𝑖enc.

We can interpret the dot product 𝐵 ∙ 𝑑  𝑠 as
being the product of a length 𝑑𝑠 of the
Amperian loop and the field component
𝐵 cos 𝜃 tangent to the loop.
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3. Ampere’s Law

Then, we can interpret the integral as being
the summation of all such products around
the entire loop.

We do not need to know the direction of 𝐵 to
perform the integration. Instead, we
arbitrarily assume 𝐵 to be in the direction of
integration. We then use the following right-
hand rule to assign a plus sign or a minus sign
to each of the currents that make up the net
encircled current 𝑖enc.

26



3. Ampere’s Law

Curl your right hand around the Amperian loop,
with the fingers pointing in the direction of
integration. A current through the loop in the
general direction of your outstretched thumb is
assigned a plus sign, and a current generally in
the opposite direction is assigned a minus sign.

With the indicated counterclockwise direction of
integration, the net current encircled by the loop
is

𝑖enc = 𝑖1 − 𝑖2.
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3. Ampere’s Law

We then can write

 𝐵 cos 𝜃 𝑑𝑠 = 𝜇0 𝑖1 − 𝑖2 .

We will next apply Ampere’s law to two
situations in which symmetry allows us to
evaluate the integral and find the magnetic
field.
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3. Ampere’s Law

Magnetic Field Outside a Long Straight Wire with Current

The figure shows a long straight wire that
carries current 𝑖 out of the page. The magnetic
field 𝐵 has a cylindrical symmetry about the
wire. Thus, we encircle the wire with a
concentric circular Amperian loop of radius 𝑟.
The magnetic field 𝐵 then has the same
magnitude 𝐵 at every point on the loop. We
integrate counterclockwise, so that 𝑑 𝑠 has the
direction shown in the figure. Note that 𝐵 is
tangent to the loop at every point along the
loop, as is 𝑑 𝑠.
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3. Ampere’s Law

Magnetic Field Outside a Long Straight Wire with Current

Thus, 𝐵 and 𝑑 𝑠 are either parallel or
antiparallel along the loop. We will assume that
𝐵 and 𝑑 𝑠 are parallel. The angle 𝜃 between
them is then 0. The integration becomes

 𝐵 ∙ 𝑑  𝑠 =  𝐵 cos 𝜃 𝑑𝑠 = 𝐵 𝑑𝑠 = 𝐵 2𝜋𝑟 .
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3. Ampere’s Law

Magnetic Field Outside a Long Straight Wire with Current

The right-hand rule gives us a plus sign for the
current.

Ampere's law becomes

𝐵 2𝜋𝑟 = 𝜇0𝑖.

or

𝐵 =
𝜇0𝑖

2𝜋𝑟
.
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3. Ampere’s Law

Magnetic Field Inside a Long Straight Wire with Current

To find the magnetic field at points inside the
wire shown, we can again use an Amperian loop
of radius 𝑟, where now 𝑟 > 𝑅. As in the previous
subsection, the left side of Ampere’s law gives

 𝐵 ∙ 𝑑  𝑠 = 𝐵 2𝜋𝑟 .

The current encircled by the loop is

𝑖enc = 𝐽𝐴loop =
𝑖

𝐴wire
𝐴loop = 𝑖

𝜋𝑟2

𝜋𝑅2
= 𝑖
𝑟2

𝑅2
.
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3. Ampere’s Law

Magnetic Field Inside a Long Straight Wire with Current

Ampere's law becomes

𝐵 2𝜋𝑟 = 𝜇0𝑖
𝑟2

𝑅2
,

or

𝐵 =
𝜇0𝑖

2𝜋𝑅2
𝑟.
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3. Ampere’s Law

34

 𝐵 ∙ 𝑑  𝑠 = 𝜇0𝑖enc



3. Ampere’s Law

𝑑, 𝑎 & 𝑐 tie, 𝑏
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 𝐵 ∙ 𝑑  𝑠 = 𝜇0𝑖enc



3. Ampere’s Law

Example 3: The figure shows the cross section of a
long conducting cylinder with inner radius 𝑎
= 2.0 cm and outer radius 𝑏 = 4.0 cm. The cylinder
carries a current out of the page, and the magnitude
of the current density in the cross section is given by
𝐽 = 𝑐𝑟2, with 𝑐 = 3.0 × 106 A/m4 and 𝑟 in meters.
What is the magnetic field at the dot in the figure,
which is at radius 𝑟 = 3.0 cm from the central axis of
the cylinder?
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3. Ampere’s Law

We first draw the Amperian loop shown in the figure.
The left side of Ampere’s law is then

 𝐵 ∙ 𝑑  𝑠 = 𝐵 2𝜋𝑟 .

The encircled current is

𝑖enc =  𝐽 𝑑𝑎 =  
𝑎

𝑟

𝑐𝑟2 2𝜋𝑟𝑑𝑟 = 2𝜋𝑐 
𝑎

𝑟

𝑟3 𝑑𝑟.

=
𝜋𝑐 𝑟4 − 𝑎4

2
.
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3. Ampere’s Law

We should take 𝑖enc is negative, according to the
right-hand rule.

Thus, Ampere’s law gives us that

𝐵 2𝜋𝑟 = −𝜇0
𝜋𝑐 𝑟4 − 𝑎4

2
.

Solving for 𝐵 and substituting give

𝐵 = −
𝜇0𝑐

4𝑟
𝑟4 − 𝑎4

= −
4𝜋 × 10−7 T ∙

m
A

3.0 × 106 A/m4

4 0.003 m
× 0.003 m 4 − 0.002 m 4

= −2.0 × 10−5 T.
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3. Ampere’s Law

Thus, the magnetic field at 𝑟 = 3.0 cm is

𝐵 = 2.0 × 10−5 T.

The direction of 𝐵 is opposite to the direction of
integration. Thus, 𝐵 is counterclockwise.
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4. Solenoids and Toroids

Magnetic Field of a Solenoid

The figure shows a solenoid, which is a long, tightly
wound helical coil of wire. We assume that the length of
the solenoid is much greater that its diameter.
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4. Solenoids and Toroids

Magnetic Field of a Solenoid

This figure shows a section through a portion of a
stretched-out solenoid. The solenoid’s magnetic field
is the vector sum of the fields produced by the
individual turns.

For points very close to a turn, the wire behaves
magnetically like a long straight wire, and the field
lines there are concentric circles. The field between
adjacent turns tends to cancel.

Additionally, the field inside the solenoid is
approximately parallel to the solenoid axis.
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4. Solenoids and Toroids

Magnetic Field of a Solenoid

In the limiting case of an ideal solenoid, which is
infinitely long and consists of tightly packed turns of
square wire, the field inside the coil is uniform and
parallel to the solenoid axis.

The magnetic field set up by the upper parts of the
solenoid tends to cancel the field set up there by
the lower parts of the turns. For an ideal solenoid,
the magnetic field outside the solenoid is zero.
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4. Solenoids and Toroids

Magnetic Field of a Solenoid

For a real solenoid, the external magnetic field can
be excellently approximated to be zero at external
points that are not at either end of the solenoid.

The direction of the magnetic field along the
solenoid axis is given by a curled-straight right-
hand rule: Grasp the solenoid with your right hand so
that your fingers follow the direction of the current in
the windings; your extended right thumb then points
in the direction of the axial magnetic field.
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4. Solenoids and Toroids

Magnetic Field of a Solenoid

The figure shows the lines of the
magnetic field for a real solenoid.
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4. Solenoids and Toroids

Magnetic Field of a Solenoid

To find the magnetic field 𝐵 for an ideal
solenoid, we use Ampere's law:

 𝐵 ∙ 𝑑  𝑠 = 𝜇0𝑖enc.

For the rectangular Amperian loop shown,

 𝐵 ∙ 𝑑  𝑠 = 𝐵ℎ.

Let 𝑛 be the number of turns per unit
length of the solenoid.
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4. Solenoids and Toroids

Magnetic Field of a Solenoid

The encircled current is then

𝑖enc = 𝑖 𝑛ℎ .

Ampere’s law gives

𝐵ℎ = 𝜇0𝑖𝑛ℎ,

or
𝐵 = 𝜇0𝑖𝑛.

Note that 𝐵 does not depend on the length
or diameter of the solenoid.
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4. Solenoids and Toroids

Magnetic Field of a Toroid

The figure shows a toroid, which is a ring
form of a solenoid.
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4. Solenoids and Toroids

Magnetic Field of a Toroid

We want to find the magnetic field 𝐵 inside an ideal
toroid, using Ampere’s law and the symmetry of the
toroid.

From symmetry, we conclude that the field lines are
concentric circles inside the toroid. We choose a
concentric circle of radius 𝑟 as an Amperian loop and
traverse it clockwise.
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4. Solenoids and Toroids

Magnetic Field of a Toroid

Ampere’s law yields

𝐵 2𝜋𝑟 = 𝜇0𝑖𝑁,

where 𝑖 is the current in the toroid windings and 𝑁 is
the total number of the turns. Thus,

𝐵 =
𝜇0𝑖𝑁

2𝜋

1

𝑟
.

Unlike in the case if a solenoid, the magnetic field is
not constant over a cross section of a toroid.
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4. Solenoids and Toroids

Magnetic Field of a Toroid

It can be shown by direct application of Ampere’s law
that the magnetic field is zero outside an ideal toroid.

The direction of the field is given by a curled-straight
right-hand rule: Grasp the toroid with the fingers of
your right hand curled in the direction of the current
in the windings; your extended right thumb points in
the direction of the magnetic field.
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4. Solenoids and Toroids

Example 4: A solenoid has length 𝐿 = 1.23 m and inner diameter 𝑑 = 3.55 cm and
it carries a current 𝑖 = 5.57 A. It consists of five close-packed layers, each with 850
turns along length 𝐿. What is 𝐵 at its center?

𝐵 = 𝜇0𝑖𝑛 = 𝜇0𝑖 5 ×
𝑁

𝐿
= 4𝜋 × 10−7 T ∙

m

A
5.57 A 5 ×

850 turns

1.23 m

= 24.2 mT.
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5. A Current-Carrying Coil as a Magnetic Dipole

So far we have studied the magnetic fields produces by currents in a long straight
wire, solenoid and toroid. We now turn our attention to the magnetic field
produced by a coil carrying a current.

We saw that a coil behaves as a magnetic dipole. A torque  𝜏 given by

 𝜏 =  𝜇 × 𝐵

acts on a coil if we place it in an external magnetic field.
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5. A Current-Carrying Coil as a Magnetic Dipole

Magnetic Field of a Coil

Unfortunately, the symmetry of the does not
allow us to use Ampere’s law; we need to use
Biot-Savart law.

The magnitude of the magnetic field at any
point on the loop’s perpendicular central axis (𝑧
axis) is given by

𝐵 𝑧 =
𝜇0 𝑖 𝑅

2

2 𝑅2 + 𝑧2 3/2
,

where 𝑅 is the radius of the loop. The direction
of 𝐵 is the same as that of  𝜇.
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5. A Current-Carrying Coil as a Magnetic Dipole

Magnetic Field of a Coil

For axial points far from the loop, where 𝑧 ≫ 𝑅,
𝐵 can be approximated as

𝐵 𝑧 ≈
𝜇0 𝑖𝑅

2

2𝑧3
.

For a coil of 𝑁 turns, we can write

𝐵 𝑧 =
𝜇0
2𝜋

𝑁𝑖𝐴

𝑧3
.

where 𝐴 = 𝜋𝑅2, the area of the coil.
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5. A Current-Carrying Coil as a Magnetic Dipole

Magnetic Field of a Coil

In terms of  𝜇, we can recast 𝐵 𝑧 as

𝐵 𝑧 =
𝜇0
2𝜋

 𝜇

𝑧3
.

We can regard a current-carrying coil as a
magnetic dipole in two ways:

(1) It experiences a torque when we place it in
an external magnetic field.

(2) Its magnetic field resembles that of a bar
magnet.
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5. A Current-Carrying Coil as a Magnetic Dipole

56

𝐵 𝑧 =
𝜇0 𝑖 𝑅

2

2 𝑅2 + 𝑧2 3/2



5. A Current-Carrying Coil as a Magnetic Dipole

d, a, b & c tie.
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