
Chapter 28
Magnetic Fields
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1. What Produces a Magnetic Field?

There are to ways in which magnetic fields can be produced:

1) Using moving charged particles, such as a current in a wire, to make an
electromagnet.

2) By means of elementary particles, such as electrons. These particles have an
intrinsic magnetic field around them. The magnetic fields of the electrons in
certain materials add together to produce a net magnetic field surround the
material. Such addition makes the martial a permanent magnetic. In other
martials, the magnetic fields of the electrons cancel out, giving no net magnetic
field surrounding the material.
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2. The Definition of 𝐵

We define the magnetic field 𝐵 in terms of the magnetic force  𝐹𝐵 exerted on a
moving electrically charged particle.

The magnetic force  𝐹𝐵 on a charged particle of charge 𝑞 and velocity vector  𝑣 is
given by

 𝐹𝐵 = 𝑞  𝑣 × 𝐵.

The magnitude of  𝐹𝐵 is

𝐹𝐵 = 𝑞 𝑣𝐵 sin𝜙 ,

where 𝜙 is the angle between the directions of the velocity vector  𝑣 and the
magnetic field vector 𝐵.
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2. The Definition of 𝐵

Finding the Magnetic Force on a Particle
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2. The Definition of 𝐵

Finding the Magnetic Force on a Particle
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2. The Definition of 𝐵

The force  𝐹𝐵 acting on a charged particle moving with velocity  𝑣 through a
magnetic field 𝐵 is always perpendicular to  𝑣 and 𝐵.

The SI unit for 𝐵 is N/ C ∙ m/s , which is called tesla T :

1 T = 1
N

C ∙ m/s
.

Using that 1 A = 1 C/s, we write

1 T = 1
N

C/s ∙ m
= 1

N

A ∙ m
.
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2. The Definition of 𝐵

Another commonly used magnetic
field unit is the gauss (G), where

1 tesla = 104 gauss.
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2. The Definition of 𝐵

a)  k

b) −  i

c) The force is zero.
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2. The Definition of 𝐵

Magnetic Field Lines

We can visualize magnetic fields with field lines. They
obey two rules:

1) The direction of the tangent to a magnetic field line
at any point gives the direction of 𝐵 at that point.

2) The spacing of the lines represents the magnitude of
𝐵. The magnetic field is stronger where the lines are
closer together, and vice versa.
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2. The Definition of 𝐵

Magnetic Field Lines

The lines pass through the magnet. They form closed
loops. The lines leave from one of the ends (north pole)
and enter the other end (south pole).
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2. The Definition of 𝐵

Magnetic Field Lines

A magnet is called a magnetic dipole because it has two poles.

If we place two magnets of any shape near each other we find that opposite
magnetic poles attract each other, and like magnetic poles repel each other.
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2. The Definition of 𝐵

Example 1: A uniform magnetic field, with magnitude
1.2 mT, is directed vertically upward throughout the
volume of a laboratory chamber. A proton with kinetic
energy 5.3 MeV enters the chamber, moving horizontally
from south to north. What magnetic deflecting force acts
on the proton as it enters the chamber? The proton mass
is 1.67 × 10−27 kg. (Neglect Earth’s magnetic field.)

The speed of the proton is

𝑣 =
2𝐾

𝑚𝑝
=

2 5.3 MeV 1.60 × 10−19 J/eV

1.67 × 10−27 kg

= 3.2 × 107 m/s.
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2. The Definition of 𝐵

The magnetic force is then

𝐹𝐵 = 𝑞 𝑣𝐵 sin𝜙

= 1.60 × 10−19 C 3.2 × 107
m

s
× 1.2 mT sin 90°

= 6.1 × 10−15 N.
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3. Crossed Fields: Discovery of Electrons

Both an electric field 𝐸 and a magnetic field 𝐵 can produce force on a charged
particle. The fields are said to be crossed fields when they are perpendicular to
each other.

We will examine what happens to charged particles, namely electrons, as they
move through crossed fields via studying the experiment that led to the discovery
of the electron.

The figure in the next slide shows a modern, simplified version of Thomson’s
experiment apparatus; a cathode ray tube.
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3. Crossed Fields: Discovery of Electrons
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3. Crossed Fields: Discovery of Electrons

Thomson procedure was equivalent to the following steps:

1. Set 𝐸 = 0 and 𝐵 = 0 and note the position (𝑦) of the spot on screen S due to 
the undeflected beam.

2. Turn on 𝐸 and measure the resulting beam deflection.

3. Maintaining 𝐸, now turn on 𝐵 and adjust its value until the beam returns to the 
undeflected position.

Recall that the deflection of a charged particle, of mass 𝑚 and charge 𝑞, moving 
through an electric field 𝐸 with speed 𝑣 between two plates of length 𝐿 is given by

𝑦 =
𝑞 𝐸𝐿2

2𝑚𝑣2
,
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3. Crossed Fields: Discovery of Electrons

When the two fields are adjusted so that the two defecting forces cancel, we have

𝑞 𝐸 = 𝑞 𝑣𝐵 sin 90° = 𝑞 𝑣𝐵,

or

𝑣 =
𝐸

𝐵
.

Thus, the crossed fields allow us to measure the speed of the charged particles
passing through them. Substituting for 𝑣 in the expression for the defection and
rearranging give

𝑚

𝑞
=

𝐵2𝐿2

2𝑦𝐸
.

Thomson concluded that the 𝑚/ 𝑞 ratio for these particles (electrons) was less
than that of hydrogen by more than 1000.
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3. Crossed Fields: Discovery of Electrons

a) 2, 1 & 3 tie.

b) 4
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4. A Circulating Charged Particle

Circulating Charged Particles

If a particle moves in a circle at a constant speed, the
net force acting on the particle is constant in
magnitude and points radially inward, perpendicular
to the particle’s velocity.

The figure shows an example of such a motion, where
a beam of electrons enter the plane of the page with
speed 𝑣 and move in a uniform magnetic field 𝐵,
directed out of the plane. Consequently, a radially
directed magnetic force  𝐹𝐵 = 𝑞  𝑣 × 𝐵 defects the
electrons, causing them to follow a circular path.
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4. A Circulating Charged Particle

Circulating Charged Particles

Let us determine the parameters that characterize
the circular motion of any particle of charge 𝑞 and
mass 𝑚, perpendicular to a uniform magnetic field 𝐵
at speed 𝑣. Newton’s 2nd law (  𝐹 = 𝑚  𝑎) applied to
uniform circular motion reads

𝐹 = 𝑚
𝑣2

𝑟
.

With 𝐹 = 𝐹𝐵 = 𝑞 𝑚𝑣, we obtains

𝑞 𝑣𝐵 =
𝑚𝑣2

𝑟
.
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4. A Circulating Charged Particle

The radius of the circular path is therefore

𝑟 =
𝑚𝑣

𝑞 𝐵
.

We can write the period 𝑇 as

𝑇 =
2𝜋𝑟

𝑣
=

2𝜋

𝑣

𝑚𝑣

𝑞 𝐵
=

2𝜋𝑚

𝑞 𝐵
.

The frequency of the motion is then

𝑓 =
1

𝑇
=

𝑞 𝐵

2𝜋𝑚
.
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4. A Circulating Charged Particle

The angular frequency of the motion is

𝜔 = 2𝜋𝑓 =
𝑞 𝐵

𝑚
.

Note that 𝑇, 𝑓 and 𝜔 do not depend on 𝑣.
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4. A Circulating Charged Particle

Helical Paths

If the velocity of a charged particle has a component
parallel to the magnetic field, the particle will move
in a helical path about the direction of the field
vector.

The velocity vector  𝑣 of such a particle can be
resolved into two components, one parallel to 𝐵 and
one perpendicular to it:

𝑣∥ = 𝑣 cos 𝜙 and 𝑣⊥ = 𝑣 sin𝜙 .
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4. A Circulating Charged Particle

Helical Paths

The parallel component 𝑣∥ determines the pitch 𝑝 of
the helix (the distance between two adjacent turns).
The perpendicular component 𝑣⊥ determines the
radius of the helix; 𝑣⊥ replaces 𝑣 in all the equations
in the previous subsection.
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4. A Circulating Charged Particle

a) The electron.

b) Clockwise.
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4. A Circulating Charged Particle

Example 3: An electron with a kinetic energy of 22.5 eV moves into a region of
uniform magnetic field 𝐵 of magnitude 4.55 × 10−4 T. The angle between the
directions of 𝐵 and the electron’s velocity  𝑣 is 65.5°. What is the pitch of the helical
path taken by the electron?

The pitch 𝑝 is the distance the electron travels parallel to the magnetic field 𝐵
during one period 𝑇 of circulation. Thus,

𝑝 = 𝑣∥𝑇 = 𝑣 cos𝜙
2𝜋𝑚

𝑞 𝐵
.

𝑣 = 2𝐾/𝑚 = 2.81 × 106 m/s.

Thus,

𝑝 = 2.81 × 106
m

s
cos 65.5°

2𝜋 9.11 × 10−31 kg

(1.60 × 10−19 C)(4.55 × 10−4 T)
= 9.16 cm.
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4. A Circulating Charged Particle

Example 4: The figure shows the essentials of a mass
spectrometer, which can be used to measure the mass of
an ion; an ion of mass 𝑚 (to be measured) and charge 𝑞 is
produced in source 𝑆 . The initially stationary ion is
accelerated by the electric field due to a potential
difference 𝑉. The ion leaves 𝑆 and enters a separator
chamber in which a uniform magnetic field is perpendicular
to the path of the ion. A wide detector lines the bottom
wall of the chamber, and the 𝐵 causes the ion to move in a
semicircle and thus strike the detector. Suppose that 𝐵
= 80.000 mT , 𝑉 = 1000.0 V , and ions of charge 𝑞
= +1.6022 × 10−19 C strike the detector at a point that
lies at 𝑥 = 1.6254 m. What is the mass 𝑚 of the individual
ions, in atomic mass units (1 u = 1.6605 × 10−27 kg)?
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4. A Circulating Charged Particle

The speed of an ion as it reaches the chamber is given
by

1

2
𝑚𝑣2 = 𝑞𝑉,

which gives

𝑣 =
2𝑞𝑉

𝑚
.

The ion’s mass 𝑚 and the radius of the circular path 𝑟
= 𝑥/2 are related by

𝑟 =
𝑚𝑣

𝑞𝐵
=

𝑚

𝑞𝐵

2𝑞𝑉

𝑚
=

1

𝐵

2𝑚𝑉

𝑞
.
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4. A Circulating Charged Particle

Thus,

𝑥 =
2

𝐵

2𝑚𝑉

𝑞
.

Solving for 𝑚 and substituting give

𝑚 =
𝑞𝐵2𝑥2

8𝑉

=
1.6022 × 10−19 C 80.000 mT 2 1.6254 m 2

8 1000.0 V

= 3.3863 × 10−25 kg = 203.93 u.
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5. Magnetic Force on a Current-Carrying Wire

Figure (a) shows a vertical wire, carrying no current. A
local magnetic field near the middle of the wire, directed
out of the page, is shown.

In figure (b), a current is sent upward through the wire;
the wire deflects to the right.

In figure (c), we reverse the current direction and the wire
deflects to the left.
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5. Magnetic Force on a Current-Carrying Wire

The figure shows what happens inside the wire.

To find the force on the wire, we consider a length 𝐿 of the
wire. All the conduction electrons in this section of the wire
drift past plane 𝑥𝑥 in the figure in a time 𝑡 = 𝐿/𝑣𝑑. Thus, in
that time a charge given by

𝑞 = 𝑖𝑡 = 𝑖
𝐿

𝑣𝑑

will pass through that plane. The magnetic force 𝐹𝐵 is then

𝐹𝐵 = 𝑞𝑣𝐵 = 𝑖
𝐿

𝑣𝑑
𝑣𝑑𝐵 = 𝑖𝐿𝐵.
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5. Magnetic Force on a Current-Carrying Wire

𝐹𝐵 = 𝑖𝐿𝐵.

This equation gives the magnetic force that acts on a length 𝐿
of a straight wire carrying a current 𝑖 and immersed in a
uniform magnetic field 𝐵 that is perpendicular to the wire.
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5. Magnetic Force on a Current-Carrying Wire

In general, the magnetic field is not necessarily
perpendicular to the wire, and the magnetic force is
given by the generalization

 𝐹𝐵 = 𝑖𝐿 × 𝐵,

where 𝐿 is a length vector that has magnitude 𝐿 and
is directed along the wire segment. The force
magnitude is

𝐹𝐵 = 𝑖𝐿𝐵 sin𝜙 .

The direction of  𝐹𝐵 is that of the cross product 𝐿 × 𝐵
since we take the current 𝑖 to be positive.
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5. Magnetic Force on a Current-Carrying Wire

−  j direction

40



5. Magnetic Force on a Current-Carrying Wire

Example 5: A straight, horizontal length of copper wire has
a current 𝑖 = 28 A through it. What are the magnitude
and direction of the minimum magnetic field 𝐵 needed to
suspend the wire—that is, to balance the gravitational
force on it? The linear density (mass per unit length) of the
wire is 46.6 g/m.

To have an upward magnetic force, the magnetic field
direction must be as shown in the figure.

We want 𝐹𝐵 to balance 𝐹𝑔. Thus,

𝑖𝐿𝐵 = 𝑚𝑔.
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5. Magnetic Force on a Current-Carrying Wire

Solving for 𝐵 and substituting give

𝐵 =
𝑚𝑔

𝑖𝐿
=

𝜇𝑔

𝑖
=

0.0466 kg/m 9.80 m/s2

28 A
= 1.6 × 10−2 T.

42



6. Torque on a Current Loop

Current-carrying wires, immersed in
magnetic fields, are at the heart of every
electric motor.

The figure shows a simple motor, which
consists of a single current-carrying loop
immersed in magnetic field 𝐵 . The two
magnetic forces  𝐹 and −  𝐹 produce a
torque on the loop, tending to rotate it
about its central axis . Let us analyze that
motion.
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6. Torque on a Current Loop

The figure show a rectangular loop of sides
𝑎 and 𝑏 , carrying current 𝑖 through a
uniform magnetic field 𝐵.

We place the loop in the field so that the
long sides ( 1 and 3 ) are always
perpendicular to 𝐵, but the short sides (2
and 4) are not.
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6. Torque on a Current Loop

We use a normal vector 𝑛 that is
perpendicular to the plane of the loop in
order to define the orientation of the loop
in the magnetic field.

Curl the fingers of your right hand in the
direction of the current at any point on the
loop. Your extended thumb then points in
the direction of the normal vector 𝑛.
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6. Torque on a Current Loop

In this figure, the normal vector 𝑛 of the
loop is shown at an arbitrary angle 𝜃 to the
direction of 𝐵.

We want to find the net force and net
torque acting on the loop in this
orientation.

The net force on the loop is the vector sum
of the forces acting on its four sides.
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6. Torque on a Current Loop

For side 2 , the vector 𝐿 points in the
direction of the current and has magnitude
𝑏. The angle between 𝐿 and 𝐵 for side 2 is
90° − 𝜃. The magnitude of the force acting
on this side is

𝐹2 = 𝑖𝑏𝐵 sin 90° − 𝜃 = 𝑖𝑏𝐵 cos 𝜃 .

The force  𝐹4 acting on side 4 has the same
magnitude as  𝐹2 but the opposite
direction. Thus,  𝐹2 and  𝐹4 cancel out. Their
net torque is zero too. because their
common line of action is through the
center of the loop.
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6. Torque on a Current Loop

For sides 1 and 3, 𝐿 is perpendicular to 𝐵.
Therefore, the forces  𝐹1 and  𝐹3 have the
common magnitude 𝑖𝑎𝐵.

The forces do not tend to move the loop up
or down, since they have opposite
directions. However, the two forces do not
share the same line of action and thus
produce a net torque. The torque tends to
rotate the loop so as to align its normal
vector 𝑛 with the direction of the magnetic
field 𝐵.

48



6. Torque on a Current Loop

The moment arm of that torque about the
central axis is 𝑏/2 sin 𝜃.

The magnitude 𝜏′ of the torque due to
forces  𝐹1 and  𝐹3 is then

𝜏′ = 𝑖𝑎𝐵
𝑏

2
sin 𝜃 + 𝑖𝑎𝐵

𝑏

2
sin 𝜃

= 𝑖𝑎𝑏𝐵 sin 𝜃 .
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6. Torque on a Current Loop

Suppose we replace the single loop with a
coil of 𝑁 loops, that are wound tightly
enough that they can be a flat coil that they
can be approximated as all having the same
dimensions and lying in a plane.

The turns then form a flat coil, and a torque
𝜏′ acts on each turn.

The total torque on the coil has the
magnitude

𝜏 = 𝑁𝜏′ = 𝑁𝑖𝑎𝑏𝐵 sin 𝜃 = 𝑁𝑖𝐴 𝐵 sin 𝜃 ,

where 𝐴 = 𝑎𝑏 is the area enclosed by the
coil.
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6. Torque on a Current Loop

The expression 𝜏 = 𝑁𝑖𝐴 𝐵 sin 𝜃 is valid
for a coil of any shape. For example, for a
circular coil, of radius 𝑟,

𝜏 = 𝑁𝑖𝜋𝑟2 𝐵 sin 𝜃 .

A current-carrying flat coil placed in a
magnetic field tends to rotate so that 𝑛 has
the same direction as that of 𝐵.

In a motor, the current in the coil is
reversed as 𝑛 begins to line up with 𝐵, so
that the torque continues to rotate the coil.
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7. The Magnetic Dipole Moment

We have just seen that a torque acts to rotate a current-carrying coil placed in a
magnetic field. In this sense, the coil behaves like a bar magnet placed in the
magnetic field. Thus, a current-carrying coil is said to be a magnetic dipole.

We assign a magnetic dipole moment  𝜇 to account for the torque on the current-
carrying loop due to the magnetic field. The direction of  𝜇 is the same as that of 𝑛.
The magnitude of  𝜇 is given by

𝜇 = 𝑁𝑖𝐴.

The SI unit of  𝜇 is the ampere-square meter (A ∙ m2).

In terms of  𝜇, we can rewrite the torque on the coil due to a magnetic field as

𝜏 = 𝜇𝐵 sin 𝜃 ,

where 𝜃 is the angle between the vectors  𝜇 and 𝐵.
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7. The Magnetic Dipole Moment

Generalizing to vector equation, we obtain

 𝜏 =  𝜇 × 𝐵.

This equation is analogous to that of the torque exerted by an electric field 𝐸 on an
electric dipole moment  𝑝, namely,

 𝜏 =  𝑝 × 𝐸.

A magnetic dipole in an external magnetic field has an energy that depends on the
dipole’s orientation. For an electric dipole  𝑝 in an electric field 𝐸, we have shown
that

𝑈 𝜃 = −  𝑝 ∙ 𝐸.
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7. The Magnetic Dipole Moment

Analogously, for a magnetic dipole  𝜇 in an external magnetic field 𝐵, the dipole’s
energy is

𝑈 𝜃 = −  𝜇 ∙ 𝐵.

The energy of a magnetic dipole is minimum (= −𝜇𝐵 cos 0° = −𝜇𝐵) when its
dipole moment  𝜇 is lined up with 𝐵 . The dipole’s energy is maximum
(= −𝜇𝐵 cos 180° = +𝜇𝐵) when  𝜇 is opposite to the field.

The unit of  𝜇 can be written is joule per tesla (J/T), instead of ampere-square
meter (A ∙ m2).
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7. The Magnetic Dipole Moment

If an applied torque rotated the magnetic dipole
from an initial orientation 𝜃𝑖 to another
orientation 𝜃𝑓, then work 𝑊𝑎 is done on the
dipole by the applied torque. If the dipole is
stationary before and after the change in its
orientation, the work 𝑊𝑎 is

𝑊𝑎 = 𝑈𝑓 − 𝑈𝑖 .

A magnetic dipole does not need to be a
current-carrying loop. For example, a simple bar
magnet, rotating charged sphere, Earth,
electron, proton and neutron have magnetic
dipole moments.
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7. The Magnetic Dipole Moment

(a) All tie.

(b) 1 & 4, then 2 & 3.
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7. The Magnetic Dipole Moment

Example 6: The figure shows a circular coil with 250
turns, an area 𝐴 = 2.52 × 10−4 m2, and a current of
100 𝜇A. The coil is at rest in a uniform magnetic field of
magnitude 𝐵 = 0.85 T , with its magnetic dipole
moment  𝜇 initially aligned with 𝐵.

What is the direction of the current in the coil?

The current direction in the loop is counterclockwise, by
the right hand loop.
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7. The Magnetic Dipole Moment

(b) How much work would the torque applied by an
external agent have to do on the coil to rotate it 90°
from its initial orientation, so that  𝜇 is perpendicular to
𝐵 and the coil is again at rest?

𝑊𝑎 = 𝑈 90° − 𝑈 0° = −𝜇𝐵 cos 90° − −𝜇𝐵 cos 0°

= 𝜇𝐵.

Using 𝜇 = 𝑁𝑖𝐴, we have

𝑊𝑎 = 𝜇𝐵 = 𝑁𝑖𝐴𝐵

= 250 100 𝜇A 2.52 × 10−4 m2 0.85 T

= 5.4 𝜇J.
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