
Chapter 27
Circuits
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1. “Pumping” Chagres

We need to establish a potential difference between the ends of a device to make
charge carriers follow through the device.

To generate a steady flow of charges, you need a “charge pump”; a device that
maintains a potential difference between a pair of terminals. We call such a device
an emf device, and the device is said to provide an emf ℰ.

Very common emf devices include the battery, electric generator and solar cells.

The term emf stands for electromotive force.

Previously, we discussed the motion of charge carriers in terms of the electric field
set up in a circuit. In this chapter, we discuss the motion of charge carriers in terms
of the required work.
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2. Work, Energy, and Emf

The figure shows a simple circuit consisting of an emf
device (battery) and a resistor 𝑅. The emf device keeps
one of its terminals (the positive terminal +) at a higher
electric potential than the other terminal (the negative
terminal −). We represent the emf of the device with an
arrow, with a small circle in the tail, that points from the
negative terminal toward the positive terminal.

When an emf device is connected to a circuit, its internal
chemistry causes a net flow of positive charge carriers
from the negative terminal to the positive terminal in the
direction of the emf arrow. This flow is part of the
current that is set up around the circuit in that same
direction.
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2. Work, Energy, and Emf

Within the emf device, positive charge carriers move
from a region of low electric potential to a region of
higher electric potential. This motion is opposite to the
electric field between the terminals!

There must be some source of energy within that device
that enables it to do work on the charges by forcing
them to move the way they do. The source of energy
may be chemical, mechanical, thermal, etc.

4



2. Work, Energy, and Emf

Here we analyze the circuit from the point of view of
work and energy transfers. In a time interval 𝑑𝑡, a charge
𝑑𝑞 passes through any cross section of this circuit. The
same amount of charge must enter the emf device at its
low potential end and leave at its high potential end. The
device must do work 𝑑𝑊 on the charge 𝑑𝑞 to force it to
move in this way. In terms of this work, the emf of the
device is defined as

ℰ =
𝑑𝑊

𝑑𝑞
.
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2. Work, Energy, and Emf

The emf of an emf device is the work per unit charge
that the device does to move charge from its low
potential terminal to its high potential terminal.

The SI unit of emf is joule per coulomb or volt.
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2. Work, Energy, and Emf

An ideal emf device is one in which charge moves from terminal to terminal
without any internal resistance. This makes the potential difference between the
terminals of an ideal device equal to the emf of the device.

For example, an ideal battery with an emf of 12 V always has a potential difference
of 12 V between its terminals.

A real emf device has internal resistance to the internal movement of charges.

When an emf device is connected to a circuit, the device transfers energy to the
charge carriers passing through it. The charge carriers then transfer this energy to
the devices in the circuit.
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3. Calculating current in a Single-Loop Circuit

We will study two ways to find the current in
the simple single-loop circuit shown in the
figure. The first method is based on energy
conservation considerations. The second is
based on the concept of potentials.

The circuit shown consists of an ideal battery
with emf ℰ, a resistor of resistance 𝑅, and two
connecting wires that have negligible
resistances.
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3. Calculating current in a Single-Loop Circuit

Energy Method

In a time interval 𝑑𝑡 an amount of energy
given by 𝑃𝑑𝑡 = 𝑖2𝑅𝑑𝑡 will be dissipated in the
resistor. At the same time, a charge 𝑑𝑞 = 𝑖𝑑𝑡
would have moved through the battery 𝐵, and
the work that the battery would have done on
this charge is

𝑑𝑊 = ℰ𝑑𝑞 = ℰ𝑖𝑑𝑡.

The work done by the ideal battery must equal
the transferred energy dissipated in the
resistor:

ℰ𝑖𝑑𝑡 = 𝑖2𝑅𝑑𝑡.
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3. Calculating current in a Single-Loop Circuit

Energy Method

ℰ𝑖𝑑𝑡 = 𝑖2𝑅𝑑𝑡,

which gives
ℰ = 𝑖𝑅.

This equation tells us that the energy per unit
charge transferred to the moving charges is
equal to the energy per unit charge
transferred from them. Solving for 𝑖 gives

𝑖 =
ℰ

𝑅
.
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3. Calculating current in a Single-Loop Circuit

Potential Method

Suppose you start at any point in the circuit
and proceed around it in either direction,
adding the potential differences you
encounter. When you return to the starting
point, you must have returned to the starting
potential.

LOOP RULE: The algebraic sum of the changes
in potential encountered in a complete
traversal of any loop of a circuit must be zero.

This is referred to as Kirchhoff’s loop rule.
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3. Calculating current in a Single-Loop Circuit

Potential Method

In the figure, we start at point 𝑎 , whose
potential is 𝑉𝑎 and go clockwise around the
circuit, back to point 𝑎. The potential change is
+ ℰ as we pass through the battery to the
high-potential terminal.

There is no potential change as we process
through the wires. The potential changes by 𝑉
= 𝑖𝑅 as we proceed through the resistor. The
potential decreases because we proceed from
the high potential side of the resistor to the
low potential side.
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3. Calculating current in a Single-Loop Circuit

Potential Method

When we return to point 𝑎, the potential is
again 𝑉𝑎.

Adding all potential changes we can write

𝑉𝑎 + ℰ − 𝑖𝑅 = 𝑉𝑎 ,

or
ℰ − 𝑖𝑅 = 0.

Solving for 𝑖 gives 𝑖 = ℰ/𝑅.
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3. Calculating current in a Single-Loop Circuit

Potential Method

If we proceed around the circuit
counterclockwise, get instead

𝑉𝑎 + 𝑖𝑅 − ℰ = 𝑉𝑎 ,

or

𝑖𝑅 − ℰ = 0,

which gives the same result.
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3. Calculating current in a Single-Loop Circuit

Potential Method

RESISTANCE RULE: For a move through a
resistance in the direction of the current, the
change in potential is −𝑖𝑅; in the opposite
direction it is 𝑖𝑅.

EMF RULE: For a move through an ideal emf
device in the direction of the emf arrow, the
change in potential is +ℰ; in the opposite
direction it is−ℰ.
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3. Calculating current in a Single-Loop Circuit

a) Rightward.

b) All tie.

c) b, then c and a tie. d) b, then c and a tie.
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4. Other Single-Loop Circuits

We now extend the simple circuit of the previous section
in two ways.

Internal Resistance

The figure shows a real battery, with internal
resistance 𝑟 , wired to an external resistor 𝑅 . The
battery’s internal resistance is due to the electrical
resistance of the conducting materials of the battery.

Applying the loop rule clockwise, starting at point 𝑎,
gives

ℰ − 𝑖𝑟 − 𝑖𝑅 = 0.

Solving
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4. Other Single-Loop Circuits

Internal Resistance

ℰ − 𝑖𝑟 − 𝑖𝑅 = 0.

Solving for 𝑖 gives

𝑖 =
ℰ

𝑅 + 𝑟
.
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4. Other Single-Loop Circuits

Internal Resistance
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4. Other Single-Loop Circuits

Resistances in Series

The figure shows three resistors connected in series to
an ideal battery with emf ℰ. The resistors are connected
one another between points 𝑎 and 𝑏, and 𝑎 potential
difference is maintained across the two points by the
battery. The potential difference across the resistors
produces current 𝑖 through all of them.

In general, when a potential difference 𝑉 is applied
across resistances connected in series, the resistances
have identical currents 𝑖 . The sum of the potential
differences across the resistances is equal to the applied
potential difference 𝑉.
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4. Other Single-Loop Circuits

Resistances in Series

Resistances connected in series can be replaced with an
equivalent resistance 𝑅eq that has the same current 𝑖
and the same total potential difference 𝑉 as the actual
resistances.

Let us derive an expression for 𝑅eq. We first apply the
loop rule to the circuit shown, starting at point 𝑎 and
going clockwise. We get

ℰ − 𝑖𝑅1 − 𝑖𝑅2 − 𝑖𝑅3 = 0,

or

𝑖 =
ℰ

𝑅1 + 𝑅2 + 𝑅3
.
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4. Other Single-Loop Circuits

Resistances in Series

We next apply the loop rule to circuit with 𝑅eq, starting
at point 𝑎 and going clockwise. We obtain

ℰ − 𝑖𝑅eq = 0,

or

𝑖 =
ℰ

𝑅eq
.

Comparing the two expressions of 𝑖 shows that

𝑅eq = 𝑅1 + 𝑅2 + 𝑅3.
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4. Other Single-Loop Circuits

Resistances in Series

In general, for 𝑛 resistors,

𝑅eq = 
𝑗=1

𝑛

𝑅𝑗 .

Note that 𝑅eq is greater than any of the individual
resistances.
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4. Other Single-Loop Circuits

a) All tie.

b) 𝑅1 then 𝑅2 then 𝑅3.
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5. Potential Difference Between Two Points

We often want to find the potential difference
between two points. For example, let us find the
potential difference 𝑉𝑏 − 𝑉𝑎 between points 𝑎 and 𝑏.

Starting at point 𝑎 and moving through the battery to
point 𝑏, while keeping track of the potential changes
we encounter, we obtain

𝑉𝑎 + ℰ − 𝑖𝑟 = 𝑉𝑏 .

or
𝑉𝑏 − 𝑉𝑎 = ℰ − 𝑖𝑟.

We already found that

𝑖 =
ℰ

𝑅 + 𝑟
.
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5. Potential Difference Between Two Points

The potential difference becomes

𝑉𝑏 − 𝑉𝑎 = ℰ −
ℰ

𝑅 + 𝑟
𝑟 =

ℰ

𝑅 + 𝑟
𝑅.

Substituting the data in the figure gives

𝑉𝑏 − 𝑉𝑎 =
ℰ

𝑅 + 𝑟
𝑅 =

12 V

4.0 Ω + 2.0 Ω
4.0 Ω = 8.0 V.

Let us now move from 𝑎 to 𝑏 counterclockwise. We get

𝑉𝑎 + 𝑖𝑅 = 𝑉𝑏 .

or
𝑉𝑏 − 𝑉𝑎 = 𝑖𝑅.
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5. Potential Difference Between Two Points

𝑉𝑏 − 𝑉𝑎 = 𝑖𝑅.

Substituting for 𝑖 using

𝑖 =
ℰ

𝑅 + 𝑟
,

gives us the same expression for 𝑉𝑏 − 𝑉𝑎 as before.

In general, to find the potential between any two
points in a circuit, start at one point and traverse the
circuit to the other point, following any path, and add
algebraically the changes in potential you encounter.
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5. Potential Difference Between Two Points

Potential Difference Across a Real Battery

Points 𝑎 and 𝑏 are located at the terminals of the
battery. The potential difference 𝑉𝑏 − 𝑉𝑎 is the
terminal-to-terminal potential difference 𝑉 across the
battery. We thus write

𝑉 = ℰ − 𝑖𝑟.

If 𝑟 were zero, 𝑉 would be the emf ℰ = 12 V. However,
because 𝑟 = 2.0 Ω, 𝑉 = 8.0 V.

Note that 𝑉 depends on the value of the current 𝑖.
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5. Potential Difference Between Two Points

Grounding a Circuit

The figure shows the same previous circuit but with
point 𝑎 connected to ground. The grounding here
means only that the potential is defined to be zero at
the grounding point in the circuit. Thus, the potential at
𝑎 is defined to be 𝑉𝑎 = 0 , which implies that 𝑉𝑏
= 8.0 V.
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5. Potential Difference Between Two Points

Grounding a Circuit

The figure is the same as before but with point 𝑏
connected to ground. Thus, 𝑉𝑏 = 0, which tells that 𝑉𝑎
= −8.0 V.
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5. Potential Difference Between Two Points

Power, Potential, and Emf

An emf device does work on the charge carriers to establish a current 𝑖, transferring
energy to the charge carriers. A real battery emf device also transfers energy to the
internal thermal energy via resistive dissipation.

The net rate 𝑃 of energy transfer from the emf device to the charge carriers is

𝑃 = 𝑖𝑉,

where 𝑉 is the potential across the terminals of the emf device. Using 𝑉 = ℰ − 𝑖𝑟,
we obtain

𝑃 = 𝑖 ℰ − 𝑖𝑟 = 𝑖ℰ − 𝑖2𝑟.
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5. Potential Difference Between Two Points

Power, Potential, and Emf

The term 𝑖2𝑟 is the rate 𝑃𝑟 of energy transfer to thermal energy within the emf
device:

𝑃𝑟 = 𝑖
2𝑟.

The term 𝑖ℰ must be the rate 𝑃emf at which the emf device transfers energy both
to charge carriers and to internal thermal energy:

𝑃emf = 𝑖ℰ.

If a battery is being recharged, with a “wrong way ” current through it, the energy
transfer is then from the charge carriers to the battery. The rate of change of the
chemical energy is 𝑃emf = 𝑖ℰ, the rate of dissipation is given by 𝑖2𝑟, and the rate at
which carriers supply energy is given by 𝑃 = 𝑖𝑉.
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5. Potential Difference Between Two Points

a) Less.

b) Greater.

c) Equal.
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5. Potential Difference Between Two Points

Example 1: The emfs and resistances in the circuit of 
the figure have the following values:

ℰ1 = 4.4 V, ℰ2 = 2.1 V.

𝑟1 = 2.3 Ω, 𝑟2 = 1.8 Ω, 𝑅 = 5.5 Ω.

(a) What is the current 𝑖 in the circuit?

Applying the loop rule by going counterclockwise 
and starting at point 𝑎 gives

−ℰ1 + 𝑖𝑟1 + 𝑖𝑅 + 𝑖𝑟2 + ℰ2 = 0.

Solving for 𝑖 and substituting give

𝑖 =
ℰ1 − ℰ2
𝑟1 + 𝑟2 + 𝑅

=
4.4 V − 2.1 V

2.3 Ω + 1.8 Ω + 5.5 Ω
= 240 mA.
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5. Potential Difference Between Two Points

b) What is the potential difference between the
terminals of battery 1 in the figure?

We now start at point 𝑏 and travel clockwise to point
a, keeping track of potential changes. We find

𝑉𝑏 − 𝑖𝑟1 + ℰ1 = 𝑉𝑎 ,

which gives

𝑉𝑎 − 𝑉𝑏 = ℰ1 − 𝑖𝑟1 = 4.4 V − 0.2396 A 2.3 Ω

= 3.8 V.
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6. Multiloop Circuit

The figure shows a circuit with more than one loop.
There are two junctions, at 𝑏 and 𝑑, and there are
three branches connecting these junctions. The
branches are the left branch (𝑏𝑎𝑑), the right branch
(𝑏𝑐𝑑), and the central branch (𝑏𝑑). We want to find the
current in the three branches.

We arbitrarily label the currents in each branch. A
current has the same value everywhere in a branch.
The directions of the currents 𝑖1, 𝑖2 and 𝑖3 are assumed
arbitrarily.

The total current coming into a junction must be equal
to the total current leaving the junction, by charge
conservation.
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6. Multiloop Circuit

For junction 𝑑,

𝑖1 + 𝑖3 = 𝑖2.

Applying this condition to junction 𝑏 leads to the same
equation. This equation suggests a general principle:

JUNCTION RULE: The sum of the currents entering any
junction must be equal to the sum of the currents
leaving that junction.

This rule is known as Kirchhoff’s junction rule, or
Kirchhoff’s currents law.

The equation above involves three unknowns. We need
two more equations involving the same unknown.
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6. Multiloop Circuit

We obtain those two equations by applying the loop
rule twice. In this circuit, we have thee loops from
which we may choose any two. Let us choose the left-
hand and the right-hand loops.

Traversing the left-hand loop counterclockwise, starting
at point 𝑏, gives

ℰ1 − 𝑖1𝑅1 + 𝑖3𝑅3 = 0.

Traversing the right-hand loop counterclockwise,
starting at point 𝑏, yields

−𝑖3𝑅3 − 𝑖2𝑅2 − ℰ2 = 0.

Now, we have thee equations in three unknown.
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6. Multiloop Circuit

Resistances in Parallel

The figure shows three resistors connected in parallel to
an ideal emf. A potential difference 𝑉 is applies across
each of them, producing a current through each of them.

In general, when a potential difference 𝑉 is applied across
resistances connected in parallel, the resistances all have
that same potential difference 𝑉.

Resistances connected in parallel can be replaced with an
equivalent resistance 𝑅eq that has the same potential
difference 𝑉 and the same total current 𝑖 as the actual
resistances
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6. Multiloop Circuit

Resistances in Parallel

Let us write an expression for 𝑅eq. The currents in the
actual resistors, are

𝑖1 =
𝑉

𝑅1
, 𝑖2 =

𝑉

𝑅2
, 𝑖3 =

𝑉

𝑅3
.

If we apply the junction rule at point 𝑎 in the real circuit
we find

𝑖 = 𝑖1 + 𝑖2 + 𝑖3 = 𝑉
1

𝑅1
+
1

𝑅2
+
1

𝑅3
.
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6. Multiloop Circuit

Resistances in Parallel

In terms of the equivalent resistances 𝑅eq, the current 𝑖
reads

𝑖 =
𝑉

𝑅eq
.

Equating the two expressions for 𝑖 gives

1

𝑅eq
=
1

𝑅1
+
1

𝑅2
+
1

𝑅3
.
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6. Multiloop Circuit

Resistances in Parallel

In general, for 𝑛 resistors, the equivalent resistance is
given by

1

𝑅eq
= 

𝑗=1

𝑛 1

𝑅𝑗
.

Note that the equivalent resistance is smaller than any of
the combing resistances.
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6. Multiloop Circuit

a) 𝑉/2, 𝑖.

b) 𝑉, 𝑖/2.
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6. Multiloop Circuit

Example 2: The figure shows a multiloop circuit
containing one ideal battery and four resistances
with the following values:

ℰ = 12 V, 𝑅1 = 𝑅2 = 20 Ω.

𝑅3 = 30 Ω, 𝑅4 = 8.0 Ω.

(a) What is the current through the battery?

𝑅2 and 𝑅3 are connected in parallel. Their equivalent
resistance is

𝑅23 =
𝑅2𝑅3
𝑅2 + 𝑅3

=
20 Ω 30 Ω

20 Ω + 30Ω
= 12 Ω.
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6. Multiloop Circuit

Applying the loop rule clockwise from point 𝑎 yields

ℰ − 𝑖1𝑅1 − 𝑖1𝑅23 − 𝑖1𝑅4 = 0.

Therefore,

𝑖 =
ℰ

𝑅1 + 𝑅23 + 𝑅4
=

12 V

20Ω + 12Ω + 8.0Ω
= 0.30 A.
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6. Multiloop Circuit

b) What is the current 𝑖2 through 𝑅2?

The potential difference 𝑉2 across 𝑅2 is the same as
that across 𝑅23. We have

𝑉2 = 𝑉23 = 𝑖1𝑅23 = 0.30 A 12 Ω = 3.6 V.

𝑖2 =
𝑉2
𝑅2
=
3.6 V

20 Ω
= 0.18 A.
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6. Multiloop Circuit

c) What is the current 𝑖3 through 𝑅3?

Applying the junction rule at point 𝑏 gives

𝑖1 = 𝑖2 + 𝑖3.

Thus,
𝑖3 = 𝑖1 − 𝑖2 = 0.30 A − 0.18 A = 0.12 A.
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6. Multiloop Circuit

Example 3: The figure shows a circuit whose
elements have the following values:

ℰ1 = 3.0 V, ℰ2 = 6.0 V,

𝑅1 = 2.0 Ω, 𝑅2 = 4.0 Ω.

The three batteries are ideal batteries. Find the
magnitude and direction of the current in each of
the three branches.

We assume that the three currents’ directions are
as in the figure. Applying the junction rule at point
𝑎 gives

𝑖1 + 𝑖2 = 𝑖3.

48



6. Multiloop Circuit

Applying the loop rule to the left-hand loop
clockwise, starting at point 𝑏, gives

−𝑖1𝑅1 + ℰ1 − 𝑖1𝑅1 − 𝑖3𝑅2 − ℰ2 = 0.

Using 𝑖1 + 𝑖2 = 𝑖3 and substituting, we find

𝑖1 8.0 Ω + 𝑖2 4.0 Ω = −3.0 V.

Applying the loop rule to the right-hand loop
counterclockwise, starting at point 𝑏, gives

−𝑖2𝑅1 + ℰ2 − 𝑖2𝑅1 − 𝑖3𝑅2 − ℰ2 = 0.

Using 𝑖1 + 𝑖2 = 𝑖3 and substituting, we obtain

𝑖1 4.0 Ω + 𝑖2 8.0 Ω = 0.
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6. Multiloop Circuit

We have now two equations in two variable:

𝑖1 8.0 Ω + 𝑖2 4.0 Ω = −3.0 V.

𝑖1 4.0 Ω + 𝑖2 8.0 Ω = 0.

Solving for the current gives

𝑖1 = −0.50 A, 𝑖2 = 0.25 A.

We then find that

𝑖3 = 𝑖1 + 𝑖2 = −0.50 A + 0.25 A = −0.25 A.
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7. RC Circuits

We here start to discuss circuits of time-varying currents.

Charging Capacitors

The figure shows an 𝑅𝐶 series circuit, consisting of a
capacitor 𝐶, an ideal battery of emf ℰ and a resistance 𝑅.
The capacitor starts getting charged when we close the
switch 𝑆 on point 𝑎.

The charge begins to flow between the battery plates and
the battery terminals. This flow of charge (current)
increases the charge 𝑞 on the capacitor and the potential
difference 𝑉𝐶(= 𝑞/𝐶). The current becomes zero when
the potential difference across the capacitor becomes
equal to the emf ℰ. The charge on the capacitor is then 𝑞
= 𝐶ℰ.
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7. RC Circuits

Charging Capacitors

Here we want to know how the charge 𝑞 𝑡 in the
capacitor plates, the potential difference 𝑉𝐶 𝑡 across the
capacitor, and the current 𝑖 𝑡 in the circuit vary with
time.

Applying the loop rule to the circuit, clockwise, from
negative terminal of the battery gives us

ℰ − 𝑖𝑅 −
𝑞

𝐶
= 0.

Note that the last term, representing the potential
difference across the capacitor, is negative because the
potential drops as we traverse the capacitor clockwise.
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7. RC Circuits

Charging Capacitors

Using 𝑖 = 𝑑𝑞/𝑑𝑡 , we obtain after some
rearrangement

𝑅
𝑑𝑞

𝑑𝑡
+
𝑞

𝐶
= ℰ.

A solution to this equation is

𝑞 𝑡 = 𝐶ℰ 1 − 𝑒−𝑡/𝑅𝐶 .

This solution satisfies the initial condition 𝑞 0 = 0.
As 𝑡 approaches∞, 𝑞 approaches 𝐶ℰ.
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7. RC Circuits

Charging Capacitors

The derivative of 𝑞 𝑡 is the current 𝑖 𝑡 charging
the capacitor:

𝑖 𝑡 =
𝑑𝑞

𝑑𝑡
=
ℰ

𝑅
𝑒−𝑡/𝑅𝐶 .

Note that 𝑖 0 = ℰ/𝑅 and 𝑖 → 0 as 𝑡 → ∞.

A capacitor that is being charged initially acts like
ordinary connecting wire relative to the charging
current. A long time later, it acts like a broken wire.
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7. RC Circuits

Charging Capacitors

The potential difference 𝑉𝐶 𝑡 across the capacitor is

𝑉𝐶 𝑡 =
𝑞 𝑡

𝐶
= ℰ 1 − 𝑒−𝑡/𝑅𝐶 .

Note that 𝑉𝐶 0 = 0 and 𝑉𝐶 𝑡 → ℰ as 𝑡 → ∞.
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7. RC Circuits

The Time Constant

The product 𝑅𝐶 has the dimension of time (1 Ω × 1 F
= 1 s). It is called the capacitive time constant of the
circuit and represented with the symbol 𝜏:

𝜏 = 𝑅𝐶.

At time 𝑡 = 𝜏, the charge on the capacitor become

𝑞 = 𝐶ℰ 1 − 𝑒−1 = 0.63 𝐶ℰ.

The charging times for 𝑅𝐶 circuits are often stated in
terms of 𝜏.
d
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7. RC Circuits

Discharging a Capacitor

Assume now that the capacitor is fully charged to a
potential 𝑉0, equal to the emf ℰ. The switch is thrown
from 𝑎 to 𝑏, so that the capacitor can discharge through
the resistor 𝑅.

The differential equation describing 𝑞 𝑡 is as before,
but with ℰ = 0. Thus,

𝑅
𝑑𝑞

𝑑𝑡
+
𝑞

𝐶
= 0.
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7. RC Circuits

Discharging a Capacitor

A solution to this differential equation is

𝑞 𝑡 = 𝑞0𝑒
−𝑡/𝑅𝐶 ,

where 𝑞0 = 𝐶𝑉0. Note that 𝑞 0 = 𝑞0. Additionally,
𝑞 𝜏 = 𝑞0/𝑒 = 0.37𝑞0.

Differentiating 𝑞 𝑡 gives us 𝑖 𝑡 :

𝑖 =
𝑑𝑞

𝑑𝑡
= −
𝑞0
𝑅𝐶
𝑒−
𝑡
𝑅𝐶 .

Note that 𝑖 0 = 𝑖0 = 𝑞0/𝑅𝐶 = 𝑉0/𝑅. The minus sign
means that the capacitor’s charge is decreasing.
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7. RC Circuits

a) 1,2,4,3.

b) 4, 1 & 2 tie, 3.
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7. RC Circuits

Example 4: The figure shows a circuit whose
elements have the following values:

𝐶 = 500 pF, 𝑅 = 100 GΩ,

At time 𝑡 = 0 , the potential 𝑉0 between the
capacitor plates is 30 kV. How much time does the
capacitor take to discharge through the resistors so
that its stored potential energy be 50 mJ?
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7. RC Circuits

The four resistances are connected in parallel. Their
equivalent resistance is given by

1

𝑅eq
=
4

𝑅
.

Thus, 𝑅eq = 𝑅/4 = 25 GΩ.

The stored potential energy 𝑈 and the charge 𝑞 on
the capacitor’s plates are related by

𝑈 =
𝑞2

2𝐶
=
𝑞0𝑒
−𝑡/𝑅𝐶 2

2𝐶
=
𝐶𝑉0𝑒

−𝑡/𝑅𝐶 2

2𝐶

=
𝐶𝑉0
2𝑒−2𝑡/𝑅𝐶

2
.
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7. RC Circuits

Solving for 𝑡 and substituting we find

𝑡 = −
𝑅𝐶

2
ln
2𝑈

𝐶𝑉0
2

= −
25 GΩ 500 pF

2
ln

2 50 mJ

500 pF 30 kV 2

= 9.4 s.
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