
Chapter 26
Current and Resistance
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1. Electric Current

Electric current through a given surface is the net flow of charge though that
surface.

The free electrons in a copper wire are in random motion. Electrons pass though a
hypothetical surface across the wire in both directions. The net electron transport
through the surface is zero and thus no current in the wire. When we connect the
ends of the wire to a battery, we create an electric field across the wire that results
in a net electron transport in one direction and thus electric current through the
wire.

As water flows through a pipe, positive charge flow (protons) in the same direction
as that of the water. However, there is no net transport of charge because there is
an exactly equal flow of negative charge (electrons) in the same direction.
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1. Electric Current

In this chapter we discuss steady currents of conduction
electrons moving through metallic conductors such as a
copper wire.

The figure shows an isolated conducting loop over which
the potential is constant. Although conduction electrons
are available, no net electric force acts on them and thus
no current.

Now we insert a battery in the loop. The conducting loop
is no longer at a single potential difference and electric
fields acts on the conducting electrons causing them to
move and thus establishing a current. The electrons flow
reaches a constant value (steady state) in very short
time.
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1. Electric Current

The figure shows a part of a conductor in which
current has been established. If charge 𝑑𝑞 passes
through a hypothetical plane (such as 𝑎𝑎′) in time
𝑑𝑡, the current 𝑖 through the plane is defined as

𝑖 =
𝑑𝑞

𝑑𝑡
.

The charge 𝑞 that passes through the plane in a
time interval, between 0 and 𝑡, is

𝑞 =  𝑑𝑞 =  
0

𝑡

𝑖𝑑𝑡 .
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1. Electric Current

Under steady state conditions, the current is the
same for planes 𝑎𝑎′, 𝑏𝑏′ and 𝑐𝑐′ or any other
current that passes completely though the
conductor. This follows from charge conservation.

The SI unit for current is coulomb per second, or
the ampere (A):

1 ampere = 1 A = 1 C/s.
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1. Electric Current

We often represent a current with an arrow to indicate that
charge is moving. The arrow does not mean that current is a
vector.

Consider the situation shown in the upper figure. Because
charge is conserved

𝑖0 = 𝑖1 + 𝑖2.

If we bend the wires, as shown in the second figure, the
currents remain the same and 𝑖0 = 𝑖1 + 𝑖2 remains valid.

Currents arrows show only a direction of flow along a wire,
not a direction in space.
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1. Electric Current

The Direction of Currents

The current arrows are in the direction in which positively charged particles would
be forced to move due to an electric field. In conductors, it is electrons that can
move. However, we will use the following convention:

A current arrow is drawn in the direction in which positive charge carriers would
move, even if the actual charge carriers are negative and move in the opposite
direction.
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1. Electric Current
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1. Electric Current

Example 1: Water flows through a garden hose at a volume flow rate 𝑑𝑉/𝑑𝑡 of 450
cm3/s. What is the current of negative charge?

𝑖 =
charge
per

electron

electrons
per

molecule

molecules
per

second
= 𝑒 10

𝑑𝑁

𝑑𝑡
.

𝑑𝑁

𝑑𝑡
=

molecules
per
mole

moles
per unit
mass

mass
per unit
volume

volume
per

second

= 𝑁𝐴
1

𝑀
𝜌𝑤

𝑑𝑉

𝑑𝑡
=
𝑁𝐴𝜌𝑤
𝑀

𝑑𝑉

𝑑𝑡
.

9



1. Electric Current

Example 1: Water flows through a garden hose at a volume flow rate 𝑑𝑉/𝑑𝑡 of 450
cm3/s. What is the current of negative charge?

𝑖 =
10𝑒𝑁𝐴𝜌𝑤
𝑀

𝑑𝑉

𝑑𝑡

=
10 1.60 × 10−19 C 6.02 × 1023 mol−1 1.00 g/cm3

18.0 g/mol

450 cm3

s

= 2.41 × 107 A.
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2. Current Density

Sometimes we are interested in the flow of charge through a cross section of the
conductor at a particular point. To describe this flow, we use the current density  𝐽.
It has the same direction as that of the velocity of the moving charges if they are
positive and the opposite direction if they negative.

The magnitude 𝐽 gives the current per unit area through an element of the cross
section.

The amount of current through an area element 𝑑𝐴 is  𝐽 ∙ 𝑑  𝐴. The total current
through the surface is then

𝑖 =   𝐽 ∙ 𝑑  𝐴 .
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2. Current Density

If  𝐽 is uniform across a surface and parallel to 𝑑  𝐴 then

𝑖 =  𝐽𝑑𝐴 = 𝐽 𝑑𝐴 = 𝐽𝐴,

or

𝐽 =
𝑖

𝐴
.

The SI unit of current density is (A/m2).
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2. Current Density

We can represent current density with a set of lines,
called streamlines, similar to field lines. The amount
of current cannot change during the transition,
however, the current density can change. It is greater
in narrower regions.
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2. Current Density

Drift Speed

When an electric field is established in a
conductor, the charge carriers (assumed positive)
acquire a drift speed 𝑣𝑑 in the direction of the
velocity is related to the current density by

 𝐽 = 𝑛𝑒  𝑣𝑑 ,

where 𝑛𝑒 is the charge carrier density (in C/m3).

For positive charge carriers, 𝑛𝑒 is positive and  𝐽
and  𝑣𝑑 have the same direction. For negative
charge carriers, 𝑛𝑒 is negative and  𝐽 and  𝑣𝑑 are
opposite in direction.
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2. Current Density

(a) Rightward.

(b) Rightward.

(c) Rightward.
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2. Current Density

Example 2:

(a) The current density in a cylindrical wire of radius 𝑅
= 2.0 mm is uniform across a cross section of the wire and is
𝐽 = 2.0 × 105 A/m2. What is the current through the outer
portion of the wire between radial distances 𝑅/2 and 𝑅?

𝑖 = 𝐽𝐴′ = 𝐽 𝜋𝑅2 − 𝜋
𝑅

2

2

= 𝐽
3

4
𝜋𝑅2

= 2.0 × 105 A/m2
3

4
𝜋(2.0 mm)2 = 1.9 A.
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2. Current Density

(b) Suppose, instead, that the current density through a cross
section varies with radial distance 𝑟 as 𝐽 = 𝑎𝑟2, in which 𝑎
= 3.0 × 1011 A/m4 and 𝑟 is in meters. What now is the
current through the same outer portion of the wire?

The current density is not constant across a cross section
of the wire. We need to use the integral 𝑖 =   𝐽 ∙ 𝑑  𝐴.

Both  𝐽 and 𝑑  𝐴 are perpendicular to a cross section of the
wire. Thus,

 𝐽 ∙ 𝑑  𝐴 = 𝐽𝑑𝐴 cos 0 = 𝐽𝑑𝐴.
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2. Current Density

The differential area reads

𝑑𝐴 = 2𝜋𝑟 𝑑𝑟 = 2𝜋𝑟𝑑𝑟.

The current now becomes

𝑖 =   𝐽 ∙ 𝑑  𝐴 =  
𝑅/2

𝑅

𝑎𝑟2 2𝜋𝑟𝑑𝑟 = 2𝜋𝑎 
𝑅/2

𝑅

𝑟3𝑑𝑟

= 2𝜋𝑎
𝑟4

4
𝑅/2

𝑅

=
𝜋𝑎

2
𝑅4 −

𝑅

2

4

=
15

32
𝜋𝑎𝑅4

=
15

32
𝜋 3.0 × 1011

A

m4
0.0020 m 4 = 7.1 A.
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3. Resistance and Resistivity

The current in a conductor, which we apply a potential difference between its ends,
is determined by the electrical resistance of the conductor.

We can determine the resistance between any two points of a conductor by
applying a potential difference 𝑉 between those two points and measure the
resulting current 𝑖. The resistance 𝑅 is then

𝑅 =
𝑉

𝑖
.

The SI unit for resistance is the volt per ampere, which has the special name ohm
(Ω):

1 ohm = 1 Ω = 1 volt per ampere = 1 V/A.
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3. Resistance and Resistivity

A conductor whose function is to provide a specified resistance is called a resistor.
We represent a resistor and resistance with the symbol or .

For a given 𝑉, 𝑖 = 𝑉/𝑅. The greater the resistance the smaller the current.

The resistance of a conductor depends on the way in which the potential difference
is applied.

Unless otherwise stated, we will assume that any potential difference is applied as
in figure (b).
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3. Resistance and Resistivity

The resistivity 𝜌 of an isotropic (having the same
properties in all directions) resistive material at a
point is related to the electric field 𝐸 and current
density  𝐽 at that point by

𝜌 =
𝐸

𝐽
.

The SI unit of resistivity is ohm-meter (Ω ∙ m).
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3. Resistance and Resistivity

We can rewrite the last equation in vector form:

 𝐽 =
𝐸

𝜌
.

The conductivity 𝜎 of a material is defined as

𝜎 =
1

𝜌
.

The SI unit of conductivity is Ω ∙ m −1 (mohs per meter ℧/m). We can rewrite the
first equation as

 𝐽 = 𝜎𝐸.
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3. Resistance and Resistivity

Calculating Resistance from Resistivity

Resistance is a property of an object. Resistivity is a property of a material.

Let us write the resistance of a resistor made of material of resistivity 𝜌, cross-
sectional area 𝐴 and length 𝐿. Assuming the electric field and current density are
constant over the resistor, we write

𝜌 =
𝐸

𝐽
=
𝑉/𝐿

𝑖/𝐴
=
𝐴

𝐿

𝑉

𝑖
= 𝑅

𝐴

𝐿
.

or

𝑅 = 𝜌
𝐿

𝐴
.
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3. Resistance and Resistivity

𝑖 =
𝑉

𝑅
=
𝐴

𝜌𝐿
𝑉

24
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3. Resistance and Resistivity

Variation with Temperature

The resistivity of a material varies with
temperature. The relation between
temperature and resistivity for metals is
approximately linear. Thus, we can write an
approximate relation between resistivity and
temperature:

𝜌 − 𝜌0 = 𝜌0𝛼 𝑇 − 𝑇0 .

Here 𝑇0 is a selected reference temperature
and 𝜌0 is the corresponding resistivity. The
quantity 𝛼 is the temperature coefficient of
resistivity.
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3. Resistance and Resistivity

Example 3: A rectangular block of iron has dimensions 1.2 cm × 1.2 cm × 15 cm. A
potential difference is to be applied to the block between parallel sides and in such
a way that those sides are equipotential surfaces.

(a) What is the resistance of the block if the two parallel sides are the square ends
(with dimensions 1.2 cm × 1.2 cm)?

𝐴 = 1.2 cm × 1.2 cm = 1.44 × 10−4 m2.

𝑅 = 𝜌
𝐿

𝐴
= 9.68 × 10−8 Ω ∙ m

0.15 m

1.44 × 10−4 m2
= 100 𝜇Ω.
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3. Resistance and Resistivity

(b) What is the resistance of the block if the two parallel sides are the two
rectangular sides (with dimensions 1.2 cm × 15 cm)?

𝐴 = 1.2 cm × 15 cm = 1.8 × 10−4 m2.

𝑅 = 𝜌
𝐿

𝐴
= 9.68 × 10−8 Ω ∙ m

0.012 m

1.8 × 10−3 m2
= 0.65 𝜇Ω.
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4. Ohm’s Law

Ohm’s law is an assertion that the current through a device is always directly
proportional to the potential difference applied to the device.

A conducting device obeys Ohm’s law when the resistance of the device is
independent of the magnitude and polarity of the applied potential difference.

A conducting material obeys Ohm’s law when the resistivity of the material is
independent of the magnitude and direction of the applied electric field.
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4. Ohm’s Law

𝑉 = 𝑖𝑅

29

𝑉 = 𝑖𝑅 𝑉



4. Ohm’s Law

Device 2
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5. Power in Electric Circuits

The figure shows an electric circuit consisting of a battery
𝐵 connected by wires of negligible resistance to a
conducting device. The battery maintains a potential
difference 𝑉 across its own terminals and thus across the
terminals of the device. A steady current 𝑖 is produced in
the circuit, directed from terminal 𝑎 to terminal 𝑏.

The amount of charge 𝑑𝑞 that moves between the
terminals in time 𝑑𝑡 is 𝑖𝑑𝑡. This charge moves through a
decrease in potential of magnitude 𝑉, and thus its electric
potential energy decreases in magnitude by the amount

𝑑𝑈 = 𝑑𝑞 𝑉 = 𝑖 𝑑𝑡 𝑉.

31



5. Power in Electric Circuits

The energy is transferred in the device to some other
form. The power 𝑃 associated with the energy transfer is
the rate of transfer 𝑑𝑈/𝑑𝑡. Thus,

𝑃 = 𝑖𝑉.

This power 𝑃 is also the rate at which energy is
transferred from the battery to the device.

In resistors or devices with resistance, electrons’ potential
energy is transferred to the resistor or device as heat via
collisions.
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5. Power in Electric Circuits

For a resistor or some other device with resistance 𝑅, the
rate of electrical energy dissipation due to the resistance
is

𝑃 = 𝑖2𝑅,

or
𝑃 = 𝑉2/𝑅.

33



5. Power in Electric Circuits

(a) and (b), then (d), then
(c).
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5. Power in Electric Circuits

Example 4: You are given a length of uniform heating wire made of a nickel–
chromium–iron alloy called Nichrome; it has a resistance 𝑅 of 72 Ω. At what rate is
energy dissipated in each of the following situations? (a) A potential difference of
120 V is applied across the full length of the wire. (b) The wire is cut in half, and a
potential difference of 120 V is applied across the length of each half.

(a)

𝑃 =
𝑉2

𝑅
=
120 V 2

72 Ω
= 200W.

(b) The resistance of each half is 𝑅/2. For each half,

𝑃′ =
𝑉2

𝑅/2
= 400W.

The power dissipated in both halves is 2𝑃′ = 800W.
35


